




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 / 9 平行四边形的性质教学反思 从实践中学习 在反思中进步 平行四边形的性质教学反思 广州市天河中学 叶小莹 内容摘要:教学路上,不断地从实践中学习,反思个中成败得失,才能把课上得更好,努力得让自己迈向更新的领域。 关键词:教学反思 平行四边形的性质 每个教师在长期的教学活动中,都可能形成自己独特的教学风格,对同一节课,不同的教师也会有不同的教法。如果在教学活动中,能善于进行比较、研究,准确评价各种教学方法的长处和不足,从中找出最佳策略,改进自己的教学。xx 学年第二学期 我区初二中心组和学校举行同时进行了平行四边形性质的教学研讨课,由五位老师用不同的教学方法进行教学,笔者结合自己的特点上了一节课,从教学设计到教学实施对本节课有较深的认识,现将本人的设计与实施进行反思。 一、基于教学目标的设计与反思 崔允漷教授认为,课堂教学的目标是学校教育目的范畴的一个具体概念,它在教学过程中起的作用是不言自明的:它既是教学的出发点,也是归宿,或者说,它是教学的灵魂,支配着教学的全过程,并规定教与学的方向。 2 / 9 (一)目标分析与制定 本节课是人教版八年级数学下册第 19章四 边形 平行四边形的性质的内容。平行四边形及其性质是本节的重点,又是全章的重点。纵观整个初中平面几何教材,它是在学生掌握了平行线、三角形及多边形等几何知识的基础上学习的。学习它不仅是对这些已有知识的综合应用和深化,又是下一步学习矩形、菱形、正方形及梯形等知识的基础,起着承上启下的作用。学生在小学就学习了平行四边形的定义,能对四边形,尤其是特殊的四边形进行识别,但对于概念的本质属性的理解并不深刻。在学习平行四边形性质时,让学生通过观察度量,得出对边相等、对角相等、邻角互补的猜想。然后通过证明对边相等, 必须添加辅助线证明两个三角形全等,一方面引入了对角线,另一方面让学生感受把四边形转化为三角形的数学思想。因此本节课要注意突出平行四边形性质的探索过程,重视直观操作和逻辑推理的有机结合,使证明成为学生观察、实验、探究得出的结论的自然延续,把实验几何和论证几何有机结合。所以本节课的教学目标是以学生为主体,通过学生自己的观察、操作、讨论得到平行四边形的性质,并加以说明和验证,能根据平行四边形的性质解决简单的实际问题。 (二)体现目标的设计与分析 根据教学目标,本节课分成生活中的平行四边形、探索性3 / 9 质、归纳性质、 例题学习、课堂练习、自我反馈共 6 个环节。这里介绍一下环节二探索性质。 环节二、探索性质 1、已知 m n,请根据平行四边形的定义,请画一个平行四边形 前面,结合生活中的平行四边形的实例与学生已有的知识基础,培养学生的抽象思维,强化了学生对平行四边形定义的理解,让学生感受数学与生活的密切联系。这里,让学生运用定义,画平行四边形,为后面探索平行四边形的性质作准备。设计的初稿是让学生随意画一个平行四边形,但是考虑到让学生随意画,可能会花比较多的时间,所以先给一组平行线,让学生在这一基础上画平行四边形。 2、阅读课本第 83页第 2 自然段,然后进行填空 这里让学生学会自学,从教材中找出基本知识。在教学时,笔者没有讲述对边、对角的定义,以填空题的形式让学生理解对边对角,淡化概念。 3、观察这个四边形,除了两组对边分别平行外,它的边、角之间有什么关系吗?度量一下,与你的猜想一致吗? 学生动手度量刚才画出的平行四边形的边的长度、角的度数,猜想边、角之间的关系。当学生度量后,得出猜想,笔者利用交互式电子白板的即时操作功能,演示平4 / 9 行四边形的边、角之间的关系,再结合几何画板,让学生 观察不断在变化的平行四边形,通过观察测量数据得出性质。 4、归纳性质 5、利用前面学过的知识证明上述结论 已知: ABCD中,求证: AB=CD, BC=AD 思考:( 1)如何证明 A= C, B= D及 A+B=180 学生在七年级下册学习过命题、定理的相关知识,知道一个命题要经过推理证实是正确的,才能称之为定理。因此,要对刚才的猜想进行几何论证。引导学生观察命题的结论是证明线段相等,提示已学过线段相等的证明方法有哪些?(等角对等边、中点性质、线段垂直平分线定理、角平分线定 理、全等三角形对应边相等),根据题设,确定证明方法,学生选定需要利用全等来证明线段相等。然后笔者设问:证明全等条件够吗?,学生回答不够,接着设问:条件不够时,怎么办? ,学生很自然回答添加辅助线,接着设问怎样添加辅助线?,因为要在平行四边形中构造两个三角形,所以学生想到连结 AC 或者 BD,就可以得到两个三角形,并且辅助线 AC或 BD本身就可以是一组公共边,根据平行四边形的定义得到对边平行,平行可以得到内错角相等,这样,证明三角形全等的条件就凑齐了。 分析完思路后,学生自行完成证明过程。课堂 上,笔者展5 / 9 示了书写正确的学生的学习卷,从而规范几何证明的书写格式。同时,指出平行四边形对边相等也是证明线段相等的一个工具。 对于性质 2 的证明是引导学生利用刚才证明的全等三角形,通过全等三角形对角相等或者平行四边形的定义 +辅助线能证明平行四边形对角相等这一命题;然后根据平行四边形的定义和性质 2 可以推出邻角互补,证明过程课后补充。 在此,笔者提醒学生刚才添加辅助线,把未知的问题转化为已知的三角形的问题,这条辅助线叫做平行四边形的对角线,引出下面的活动。 6、引出对角线,探索性质 3并证明。 学生明确了对角线的定义后,通过度量猜想两条对角线有什么关系,有些学生很自然猜想对角线相等,但是经过度量,发现两条对角线不总是相等的。于是有些学生就卡住了。这时,笔者借助交互式电子白板,展示两个全等的平行四边形,然后旋转其中一个,让学生观察两条对角线有什么关系。同时,旋转后,两个原本重合的平行四边形还会重合,让学生巩固前面两个性质,同时发现新性质。虽然学生还没学习图形的旋转和中心对称的知识,但是操作比较直观,学生容易理解。但此处教学时,要向学生讲清线段互相平分的意义和表示方法。 6 / 9 (三)基 于教学目标的反思 课后,听课的老师提出,学生在小学学段不仅学习了平行四边形的定义,还对平行四边形进行了度量,知道平行四边形对边相等、对角相等,所以,这节课不需要花时间再去度量平行四边形的边和角。 查阅人教版小学数学四年级上册第 4章平行四边形和梯形,发现在教材中引导学生了平行四边形的定义,同时在课后练习中让学生通过度量的方式认识了平行四边形对边相等、对角相等(如右图)。 所以在备课时,应注意抓住学生的已有知识基础进行备课,充分利用学生已有知识进行学习,因此,本节课,应该在平行四边形的性质探索方面 ,着重探索对角线互相平分、邻角互补这两个性质,并正确进行平行四边形性质的证明。 同一节课, 113中的严老师让学生经历了探索 发现这样一个发展过程,加深了学生对新知识的理解。东圃的李老师根据学生特点对教学内容进行适当的处理,突出了学生的探究性学习特点,有利于中下学生的学习。汇景的张老师这节课的重点与难度的尺度把握得很好,例题与练习的设计层次分明。同校的周老师大胆放手让学生自主研讨,通过推理论证培养学生类比、转化的数学思想方法,注重引导学生进行逻辑论证,规范证明的书写格式。 二、课堂教学策略的选择 与反思 7 / 9 教学策略是指在教学过程中,为完成特定的目标,依据教学的主客观条件,特别是学生的实际,对所选用的教学顺序、教学活动程序、教学组织形式、教学方法和教学媒体等的总体考虑。 (一)课堂教学策略的选择与实施 本节课采用的教学策略: 策略一:把平行四边形的性质几个进行了整合在一个课时学完。 策略二:注重直观操作和逻辑推理的有机结合,通过观察度量、逻辑推理等手段来探索平行四边形的性质。 课堂上,学生先在学案中画一个平行四边形,然后用画图工具进行度量它的边、角、对角线,猜想平行四边形的性质;教师利用多媒 体课件拆分平行四边形边、角,进行度量,更直观的得出猜想。然后师生共同证明这个猜想,得出平行四边形的性质。 (二)课堂教学策略反思 汇景的张老师和东圃的李老师都是让学生度量学案中印好的平行四边形,这样的确节省了时间,但是学生会否质疑:是不是所有的平行四边形都具备这些性质呢?这样一来,学生自己画的平行四边形就有了随意性,学生之间画的平行四边形也不尽相同,而且,利用几何画板演示平行四边形的动态变化,学生观察边、角等测量数据在这一动态变化过程中8 / 9 存在的规律,体现了从特殊一般的过程。 113 中的严老师,通 过让学生动手用两个全等的三角形拼出平行四边形,探索出平行四边形的性质,使学生经历了探索 发现这样一个发展过程,加深了学生对新知识的理解。 汇景的张老师从学生原有的知识结构出发,通过猜想、测量、证明等多种方法得到新知识,将新知识的发生过程展现在学生的面前,与此同时渗透了一些科学研究的方法及转化的数学思想。 但是以上这三位老师的教学内容只是性质 1 和性质 2,还没涉及到对角线。笔者是对这三个性质进行了整合,让学生有比较地学习。 笔者只是把课本的例题、习题进行了整合,按照直接运用性质、间接运用性质、提 升等分了三个题组,但是总体难度不大,对于层次较好的学生,的确有吃不饱的情况。相比之下,同校的周老师的设计就显得更有深度。正如,教研员刘老师说的:证明是为了不量!周老师的课上,从证明命题已知:如图四边形 ABCD 中, , 求证:( 1) , ;( 2) , 然后到归纳性质,再到例题讲解,最后巩固练习,扎扎实实的在培养学生能力,开拓学生思维,锻炼学生素质上下苦功,朴实无华。 由于学生在小学学段已经学习了平行四边形的定义,并掌9 / 9 握平行四边形的对边、对角之间的关系,所以本节课应该在平行四边形的对边相 等、对角相等这两个性质上由教师在教学平台中演示,或者让学生代表在教学平台中演示即可,不需全班都进行度量,这样可以省下时间完成其他环节。 性质的证明是本节课教学的重点,所以在课堂上,可以给充足的时间让学生证明,然后让学生代表来讲思路,再给出规范化的书写过程。教师利用巡视学生证明,找出一些典型存在的问题。 三、基于教育信息技术的反思 数学课程标准指出,现代信息技术的发展对数学教育的价值、目标、内容以及数与学的方式产
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 专题18社会生活-教师版
- 2025年机修钳工部分理论考试试题(含答案)
- 2025年医疗机构药事管理规定试题(附答案)
- 2025年火电厂发电运行安全员公开招聘笔试试题及答案
- 教师寒假读书心得体会范文集
- 知识题库-护理学继续教育考试题及答案
- 幼儿绘画教学课件与活动方案
- 幼儿园教学计划及教学总结模板
- 期货从业资格之期货投资分析考前冲刺练习附参考答案详解(b卷)
- 期货从业资格之《期货法律法规》考前冲刺测试卷含答案详解【巩固】
- 基于无人机的公路路面及设施状况智能检测技术研究采购服务方案投标文件(技术方案)
- 履约能力提升培训大纲
- 海南省2024-2025学年高一下学期学业水平诊断(二)物理
- 海尔冰箱BCD-257DVC使用说明书
- 农民教育培训课件
- 2025年江西省高安市吴有训实验学校英语七年级第二学期期末质量检测模拟试题含答案
- 市容管理课件
- 追溯培训课件
- 离职人员资产管理制度
- 河北大学《国际金融管理》2023-2024学年第二学期期末试卷
- 供水公司成本管理制度
评论
0/150
提交评论