已阅读5页,还剩20页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,因式分解复习,(l)结果一定是积的形式; (2)每个因式必须是整式; (3)各因式要分解到不能再分解为止,把一个多项式化成几个整式的积的形式叫做因式分解,,因式分解,分解因式几个特点,即:一个多项式 几个整式的积,是互逆的关系一定是恒等变形,分解因式与多项式乘法关系,提公因式错误,可以用整式乘法检验其真伪.,不满足因式分解的含义,因式分解是恒等变形而本题不恒等.,是整式乘法.,A层练习,填空 1.若 x2+mx-n能分解成(x-2)(x-5),则m= ,n= 。 2x2-8x+m=( ),m= 。,-7,-10,x-4,16,3.下列等式中,从左到右的变形是分解因式的是( ) A. (x+5)(x-5)=x2-25 B. x2+3x+1=(x+1)(x+1)-1 x2+3x+2=(x+1)(x+2) D. a(m+n)=am+an 4.下列多项式是完全平方式的是( ) A. 0.01x2+0.7x+49 B. 4a2+6ab+9b2 9a2b2-12abc+4c2 D. X2-0.25x+0.25,C,C,1. 提公因式法,多项式各项都含有的相同因式,,定系数,定字母,定指数,系数的最大公约数,各项中都有的相同的字母。,字母的最低次幂。,公因式,确定公因式的方法,提公因式法,如果多项式的各项有公因式,把公因式提出来,从而转化为几个因式乘积的形式,(2)a-b 与 -a+b 互为相反数.,(a-b)n = (b-a)n (n是偶数) (a-b)n = -(b-a)n (n是奇数),(1) a+b与b+a 互为相同数,(a+b)n = (b+a)n (n是整数),(3)a+b 与 -a-b 互为相反数.,(-a-b)n = (a+b)n (n是偶数) (-a-b)n = -(a+b)n (n是奇数),例1 用提公因式法将下列各式因式分解. (1)-x3z+x4y;(2)3x(a-b)+2y(b-a),解:(1)-x3z+x4y=x3(-z+xy).,(2)3x(a-b)+2y(b-a),=3x(a-b)-2y(a-b),=(a-b)(3x-2y),x3,+ (b-a),- (a-b),(a-b),把下列各式分解因式: ( x y)3 ( x y) a2 x2y2,(2)4p(1-q)3+2(q-1)2,(2)完全平方公式:a22ab+b2=(ab)2其中,a22ab+b2叫做完全平方式.,例如:4x2-12xy+9y2 =(2x)2-22x3y+(3y)2=(2x-3y)2.,2. 公式法,(1)平方差公式:a2-b2=(a+b)(a-b).,例如:4x2-9=(2x)2-32=(2x+3)(2x-3).,例2 把下列各式分解因式. (1)(a+b)2-4a2 ; (2)1-10x+25x2; (3)(m+n)2-6(m+n)+9,做一做,(m+n-3)2.,(3a+b)(b-a),(1-5x)2,(2)(a+ b+c)2-(a+b-c)2,(4)3ax2-3ay4; (5)m4-1,(1) 3x+6xy+3xy,(6)y2 4xy4 x2,(3)xy-4xy+4,十字相乘法,顺口溜: 竖分常数交叉验, 横写因式不能乱,“拆两头,凑中间”,例1,例4 分解因式,练习: (1),分组后能直接运用公式,分组后能直接提取公因式,分组分解法,四项:常考虑一三分组或者是二二分组 五项:常考虑二三分组,因式分解常用方法,提公因式法,十字相乘法,分组分解法,因式分解的一般步骤:,一提:先看多项式各项有无公因式,如有公因式则要优先提取公因式;,二套: 两项考虑平方差公式; 三项考虑完全或十字;,四查:最后用整式乘法检验一遍,并看各因式能否再分 解,如能分解,应分解到不能再分解为止。,一般步骤,四项:常考虑一三分组或者是二二分组,三分,A层练习 一:将下列各式分解因式: -a-ab; m-n; x+2xy+y (4)3am-3an;,(5)18ac-8bc (6) m4 - 81n4,(7)x3-2x2+x; (8)x2(x-y)+y2(y-x),(6)若xy99求x2xy2y2xy之值,应用:1).计算: 20052-20042 = 2). 若a+b=3 , ab=2则a2b+ab2= 3). 若x2-8x+m是完全平方式,则m= 4). 若9x2+axy+4y2是完全平方式,则a=( ) A. 6 B. 12 C. 6 D. 12,D,(5).计算 + + = _,1). 3m2-27 2). 1-a4,3). 9-12x+4x2 4). -x2+4x-4 5). y3+4xy2+4x2y,6). -8a3b2+12ab3c-6a2b2 7). (m2+n2)2-4m2n2 8). (2x+y)2-(x+2y)2,B层练习 将下列各式分解因式: (2a+b)(ab) ; (2) (x+y)-10(x+y)+25 (3) 4a3b(4a3b) (4)(x25)22(x25)1 (5)(x2+y2)(x2+y2-4)+4,基本方法,第二步第一环节,C层练习 (1)不论a、b为何数,代数式a2+b2-2a+4b+5的值总是 ( ) A.0 B.负数 C.正数 D.非负数,D,(6)已知a、b、c是一个三角形的三边, 判断代数式a2-b2 -c2 2bc 的正负性。,(7)若n是任意正整数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 初中物理课标心得体会
- 初中团委自查报告
- 初中生志愿服务心得体会
- 2025年现代景观试题及答案详解
- 辽宁省2025年公务员考试面试模拟测试卷
- 2025年安徽省公务员行测模拟练习卷
- 2025年保育考评员试题及答案
- 2025年新晴野望试题及答案
- 2025年二甲评审院感应知应会试题及答案(共240题)
- 湖南省2025年公务员考试申论范文押题卷
- 2024年全国基层退役军人服务中心(站)工作人员职业技能竞赛试题及答案
- 二零二五年度车辆抵押担保资产管理合同范本
- 重症监护科口腔护理
- 2025年党纪法规知识测试题(含答案)
- 运输公司合同预付款协议
- 卫生系统护士岗位招聘基础护理学模拟试题(含答案)
- 服装设计职业生涯
- 报关单、箱单、形式发票、订单模版
- 直线的投影课件
- 实验小学教育数字化转型十五五规划
- 脑卒中康复治疗教案
评论
0/150
提交评论