四轮转向梯形机构优化设计及目标函数选取.pdf_第1页
四轮转向梯形机构优化设计及目标函数选取.pdf_第2页
四轮转向梯形机构优化设计及目标函数选取.pdf_第3页
四轮转向梯形机构优化设计及目标函数选取.pdf_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

10.16638/ ki.1671-7988.2017.14.027 10.16638/ ki.1671-7988.2017.14.027 四轮转向梯形机构优化设计及目标函数选取 段亚斌,董皓,张君安 (西安工业大学机电工程学院,陕西 西安 710021) 摘 要:针对智能车的转向梯形机构,对其空间结构及一些参数进行了合理的简化。提出了新的优化目标函数,利 用 MATLAB 优化工具箱,采用遗传算法,调用 Ga 模块对转向梯形的目标函数进行最优化设计,并与常见的目标 函数进行对比分析,找出瞬时回转中心变化的基本规律。结果表明:当转向轮转向角在较小范围内变化时,转向瞬 心基本上在一条直线上波动, 与 Akermann 原理特征相符; 在大转向角范围内, 瞬时回转中心偏离这条线越来越远, 基本不符合 Akermann 原理。为转向梯形机构优化设计提供了更精确的方法。 关键词:四轮转向;梯形机构;优化设计;目标函数 中图分类号:S463.2 文献标志码:A 文章编号:1671-7988 (2017)14-79-04 Optimum design of four wheel steering trapezium and selection of objective function Duan Yabin, Dong Hao, Zhang Junan ( School of mechanical and electrical engineering, Xian Technological University, Shaanxi Xian 710021 ) Abstract: Aiming at the steering trapezium mechanism of intelligent vehicle, the space structure and some parameters are simplified reasonably. The optimization objective function is proposed, by using the MATLAB optimization toolbox, using genetic algorithm, called Ga module optimization design for the objective function of steering trapezoid, and compared with the common objective function, find out the basic laws of the change of instantaneous center of rotation. The results show that when the steering angle of the steering wheel changes in a small range, the steering instantaneous center fluctuates basically in a straight line, which is consistent with the characteristics of the Akermann principle. In the range of large steering angle, the instantaneous center of rotation deviates from this line more and more far and basically does not conform to the principle of Akermann. It provides a more accurate method for the optimal design of the steering trapezium mechanism. Keywords: Four wheel steering; Trapezoidal mechanism; optimal design; objective function CLC NO.: S463.2 Document Code: A Article ID: 1671- 7988 (2017)14- 79- 04 引言 本文是基于自主研发的四轮独立驱动智能车,对其转向 梯形机构进行优化设计1。 智能车前后轴机构完全对称,分别都有一个转向梯形机 构,对车轮进行约束。四个车轮的速度独立可控,互不干涉。 相对于两轮转向的车来说,它的转向运动形式更多,可以实 现四轮转向,斜向运动以及原地转向等。 智能车的结构简图如图 1 所示,包括四个轮胎、两组设 计的转向梯形机构、高强度车架。 对转向梯形机构进行优化设计时,大多学者都是以外转 作者简介:段亚斌 作者简介:段亚斌 (1991-),男,硕士研究生,就读于西安工业大 学机电工程学院。主要研究方向为转向系统。董皓董皓 (1985-),男, 博士研究生,讲师,就职于西安工业大学机电工程学院。研究方向 为机械设计和机械传动。经费资助:经费资助:西安工业大学科研创新团队建 设计划资助,中国博士后基金资助项目(2016M602937XB) 。 段亚斌段亚斌 等:四轮转向梯形机构优化设计及目标函数选取等:四轮转向梯形机构优化设计及目标函数选取 80 2017 年第 14 期2017 年第 14 期 向轮转角理论值与实际值差值作为目标函数。其中,文献文 献2- 3以转向系实际内外轮与理想阿克曼转角关系之差最小 为优化目标。文献4- 5利用 MATLAB 优化工具箱对车辆的转 向梯形机构进行了优化设计。 1-轮胎;2-转向梯形机构;3-高强度车架 图 1 车辆的结构简图 本文通过分析对比,选定了一个最为直观的反映瞬时回 转中心变化情况的目标函数。 1 转向梯形数学模型的建立 1.1 转向梯形数学模型简化 整体式转向梯形连接结构弹性变化等影响因素较多,造 成目标函数以及约束条件过于复杂。因此本优化中对转向梯 形作适当的简化: (1)刚性轮胎,忽略弹性轮胎侧偏角对转 向梯形的影响; (2)转向梯形为平面运动结构,忽略前后轮 定位参数空间结构的影响。 1.2 不同目标函数的比较 1.2.1 以转角为研究对象 阿克曼理论转向特性是全部车轮都必须绕同一个瞬时中 心点做圆周纯滚动,而且前内轮与前外轮的转角应满足下面 的关系式6: (1) 其中: 、 分别为内、 外转向车轮转角; W 为汽车轴距; L 为两主销中心线延长线到地面交点之间的距离。若以 为 自变角,则可以推导出因变角 的期望值为: (2) 转向梯形各部件之间存在间隙误差以及设计误差等,故 转向梯形结构仅能近似满足上述理想转角关系公式。利用三 角关系可以推导出转向梯形实际因边角 *: (3) (4) 其中:L1为转向梯形臂长;0为转向梯形底角;L2为转 向拉杆长度;、*分别为内、外转向车轮实际转角。 目前对整体式梯形机构的优化设计,大多是建立一个目 标函数, 根据各种约束条件得到最优解。 但目标函数的选取, 大多是以实际外轮转角与 Ackermann 理论转角的差值为主 的, 即让外侧实际转角*与理论转角偏差最大值达到最小, 即式(4)7- 8。从外轮转角的误差看,会很小,但是它反映的汽 车的转弯半径的误差会很大,所以研究车辆转弯中心的误差 很重要。 (5) 1.2.2 以瞬时回转中心为研究对象 考虑到汽车瞬时回转中心才能更加直观的反映出汽车的 转弯误差, 所以以瞬时回转中心的位置为研究对象更有意义。 将转向梯形机构与车架看成一个四杆机构,利用复数矢量法 对机构进行分析。 如图 2 所示,建立转向梯形机构的直角坐标系。 图 2 转向梯形机构 设左梯形臂长为 L1,其方位角为 1,右梯形臂长为 L3, 其方位角为 3,则转向梯形机构矢量方程式的复数矢量形式 为: (6) 由此方程组可求得方位角 1 与 3 之间的函数关系, 即: (7) 式中: 在本次优化设计中,左、右梯形臂长相等,即 L1= L3, 杆件 4 等于汽车轴距,即 L4=W。 设车辆转向中心为 P(xP,yP),A (xA,yA),B(xB,yB), C(xC,yC),D(xD,yD)。其中 xA= xD=- w/2,xB= xC=- w/2,yA= yB=- L,yC= yD=0。 (8) (9) 为了使车辆转弯的时候尽量满足阿克曼原理,所以必须 使转向瞬心在后轴水平线附近波动,即: (10) (11) 对于转向梯形机构的设计,在上述的分析推导中,可以 看出利用车轮转角误差来反映车辆转弯的状况,显然效果不 汽车实用技术汽车实用技术 81 2017 年第 14 期2017 年第 14 期 太好,即使车轮转角误差很小,但是换算到车辆的转向中心 处,就会误差很大。所以直接用转向瞬心的误差来进行优化 设计,能更好的达到优化效果。 2 转向梯形目标函数与约束条件 2.1 目标函数的确定 通过上述分析,可以知道使用理论转向瞬心与实际转向 瞬心距离与前轴中心转向半径的比值作为目标函数 f (x)能更 好的达到优化效果。故选择式(11)作为此次优化设计的目标 函数。 2.2 目标函数约束条件的确定 考虑到对于汽车的轴距和前后转向轮两主销间的距离相 对固定,不容易改变,因此对于整体式转向梯形选择梯形臂 长和转向横拉杆作为设计变量,即: (12) 根据设计经验,在进行转向梯形机构设计时,为了减少 转向时横拉杆的轴向力,一般要求转向臂长 L1不宜过短,通 常取 L10.11W; 考虑到空间布局, 也不宜太长, 取 L20.22W。 由机械原理可以知道,对于四杆机构在运动时,必须考虑传 动角的变化, 一般要求传动角 40。 经过推导可以得到传 动角 为: (13) 3 算例及分析 3.1 优化方法 MATLAB 优化工具箱中一系列的优化算法和模块可以 用于求解约束线性最小二乘优化、约束非线性或无约束非线 性极小值问题等问题。为求出全局解,减少初值对最终结果 的影响,选用遗传算法。整体式转向梯形优化属于约束非线 性极小值问题,在程序设计中主要调用 Ga 模块对转向梯形 进行最优化设计。 3.2 实例优化设计 在程序设计中,初始点 x0=0.133 1.5,两个变量的下限 为0.06W, 0.1+W, 上限为0.2W, 1.8W, 车辆的轴距L=1.8m; 两主销中心线延长线到地面交点之间的距离 W=1.43m。 选用 MATLAB 中自带遗传算法函数 GA 的格式为x,fval, exitflag=ga(fun,x0,A,b,Aeq,beq,lb,ub)。 根据已经确定的目标函数、约束条件及相应的程序,针 对上述实例的智能车转向梯形进行优化设计。优化结果中得 到的 x(1)为梯形臂长,x(2)为转向横拉杆长,fval 为目标函数 在优化的梯形臂长和转向横拉杆的最优值。 优化结果 exitflag=1,得到的结果是合理的。从优化的结 果数据看出,最终的设计变量优化值分别为:梯形臂长 L1=0.1243m,转向横拉杆 L2=1.6479m。 3.3 结果分析 如下图 3 所示,车辆从直行进入转弯状态,当转向轮转 向角在较小范围内变化时,转向瞬心基本上在一条直线上波 动,与 Akermann 原理特征基本相符;在大转向角范围内, 瞬时回转中心偏离这条线越来越远,基本不符合 Akermann 原理。 图 3 四轮转向瞬时回转中心 图 4 是四轮转向回转中心绝对误差,从中可以看出,当 转向轮转角变化很小时,瞬时回转中心受到的影响很大,随 着转角变得越来越大,瞬时回转中心受到的影响越小。 图 4 四轮转向回转中心绝对误差 图 5 外轮实际转角与理论值对比 图 6 转角误差 段亚斌段亚斌 等:四轮转向梯形机构优化设计及目标函数选取等:四轮转向梯形机构优化设计及目标函数选取 82 2017 年第 14 期2017 年第 14 期 图 5 给出了外轮实际转角与理论值对比,图 6 表示转角 误差值,从以上图示可以分析看出,把外轮转向角作为研究 对象, 以其的理论值和实际值的差值作为目标函数, 即式(5), 并不能直观的反映出瞬时转向中心的变化情况,从图 5 中只 能看出转向角的实际值在理论值附近波动。故选用式(11)作 为目标函数,能够更好地看出瞬时回转中心的变化规律及误 差值。 4 结论 本文提出的优化目标函数,较常用的目标函数,能更为 准确的揭示出瞬时回转中心变化的基本规律。 (1) 车辆进入转弯状态时, 瞬时回转中心距离车身较远 时,基本在一条横线上波动。 (2)当转向角越大,回转中心越靠近车身时,回转中心 会越来越远离这条线,此时对于车辆,运动的稳定性很差。 可以为转向梯形机构的优化设计提供更加精确的方法和 思路。 参考文献 1 刘贺. 无人驾驶智能车的结构设计D. 西安工业大学, 2014. Liu He. Structural design of unmanned intelligent vehicle D. Xian Technological University, 2014. (in Chinese). 2 史天泽, 王登峰, 陈书明,等. 基于 6 稳健性的电动汽车断开式 转向梯形优化设计J. 吉林大学学报(工), 2016, 46(3):700- 705. Shi Tianze,Wang Dengfeng,Chen Shuming .Robustness optimization of divided steering linkage for electric vehicles based on 6 design J. Journal of Jilin University(Engineering ),2016, 46(3):700- 705. (in Chinese). 3 吕明, 方宗德, 张国胜,等. 基于 Pro/E 的汽车转向梯形机构的设 计J. 机械传动, 2006, 30(5):45- 47. Lv Ming,Fang Zongde,Zhang Guosheng.Dsign of Ackerman Geometry Based on Pro/EJ. Mechanical Drive, 2006, 30(5):45- 47. (in Chinese). 4 何正强, 石凯凯. 整体式转向梯形机构的优化设计J. 现代机械, 2012(2):33- 34. He Zhengqiang,Shi Kaikai. Optimum design of integral steering trapezium mechanismJ. Modern Machinery, 2012(2):33- 34. (in Chinese). 5 李军. 基于 MATLAB 优化工具箱的农用运输车转向梯形优化设 计J. 农机化研究, 2011, 33(5):147- 150. Li Jun. Optimization design of steering trapezium of agricultural transport vehicle based on MATLAB optimization toolboxJ. Journal of Agricultural Mechanization Research, 2011, 33(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论