




已阅读5页,还剩40页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
椭圆的简单几何性质(1),复习:,1.椭圆的定义:,到两定点F1、F2的距离之和为常数(大于|F1F2 |)的动点的轨迹叫做椭圆。,2.椭圆的标准方程是:,3.椭圆中a,b,c的关系是:,a2=b2+c2,当焦点在X轴上时,当焦点在Y轴上时,关于x轴对称,关于y轴对称,关于原点对称,椭圆对称性,观察:椭圆,一、椭圆的对称性,把(X)换成(-X),方程不变,说明椭圆关于( )轴对称; 把(Y)换成(-Y),方程不变,说明椭圆关于( )轴对称; 把(X)换成(-X), (Y)换成(-Y),方程还是不变,说明椭圆关于( )对称;,中心:椭圆的对称中心叫做椭圆的中心。,所以,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。,Y,X,原点,二、椭圆的顶点,令 x=0,得 y=?,说明椭圆与 y轴的交点( ), 令 y=0,得 x=?, 说明椭圆与 x轴的交点( )。,*顶点:椭圆与它的对称轴的四个交点,叫做椭圆的顶点。,0, b,a, 0,*长轴、短轴: 线段A1A2、B1B2分别叫做椭圆的长轴和短轴。,a、b分别叫做椭圆的长半轴长和短半轴长。,-axa, -byb 知 椭圆落在x=a,y= b组成的矩形中,三、范围:,例1,求椭圆 16 x2 + 25y2 =400的长轴和短轴的长、离心率、焦点和顶点坐标,解:把已知方程化成标准方程,椭圆的长轴长是:,离心率:,焦点坐标是:,四个顶点坐标是:,椭圆的短轴长是:,2a=10,2b=8,练习:椭圆的简单画法,(1),(2),A1,B1,A2,B2,B2,A2,B1,A1,例2 椭圆的一个顶点为 ,其长轴长是短轴长的2倍,求椭圆的标准方程,分析:题目没有指出焦点的位置,要考虑两种位置,椭圆的标准方程为: ;,椭圆的标准方程为: ;,解:(1)当 为长轴端点时, , ,,(2)当 为短轴端点时, , ,,综上所述,椭圆的标准方程是 或,问题2:圆的形状都是相同的,而椭圆却有些比较“扁”,有些比较“圆”,用什么样的量来刻画椭圆“扁”的程度呢?,四、椭圆的离心率,离心率:椭圆的焦距与长轴长的比:,叫做椭圆的离心率。,1离心率的取值范围:,2离心率对椭圆形状的影响:,0e1,1)e 越接近 1,c 就越接近 a,从而 b就越小,椭圆就越扁 2)e 越接近 0,c 就越接近 0,从而 b就越大,椭圆就越圆,3e与a,b的关系:,复习练习1.已知椭圆方程为 则,它的长轴长是: ; 短轴长是: ; 焦距是: ; 离心率等于: ; 焦点坐标是: ; 顶点坐标是: ; 外切矩形的面积等于: 。,2,小试牛刀,M,d,F,H,x,y,o,例2:(选自优化设计) 分别求适合下列条件的椭圆的标准方程: (1)长轴长是6,离心率是 (2)焦点在x轴上,且一个焦点与短轴的两个端点的连线互相垂直,焦距为6.,例3:(选自优化设计),小结一:基本元素,1基本量:a、b、c、e、(共四个量),2基本点:顶点、焦点、中心(共七个点),3基本线:对称轴(共两条线),请考虑:基本量之间、基本点之间、基本线之间以及它们相互之间的关系(位置、数量之间的关系),|MF1|+|MF2|=2a (2a|F1F2|),(c,0)、(c,0),(0,c)、(0,c),(a,0)、(0,b),|x| a |y| b,|x| b |y| a,关于x轴、y轴、原点对称,(b,0)、(0,a),小结二:,一个框,四个点,注意光滑和圆扁,莫忘对称要体现,小结:,1.知识小结: (1) 学习了椭圆的范围、对称性、顶点坐标、离心率等概念及其几何意义。 (2) 研究了椭圆的几个基本量a,b,c,e及顶点、焦点、对称中心及其相互之间的关系 2.数学思想方法: (1)数与形的结合,用代数的方法解决几何问题。 (2)分类讨论的数学思想,已知椭圆 的离心率 ,求 的值,由 ,得:,解:当椭圆的焦点在 轴上时, , ,得 ,当椭圆的焦点在 轴上时, , ,得 ,由 ,得 ,即 ,满足条件的 或 ,思考:,2.1.2椭圆的简单几何性质(3),高二数学 选修1-1 第二章 圆锥曲线与方程,直线与椭圆的位置关系,回忆:直线与圆的位置关系,1.位置关系:相交、相切、相离 2.判别方法(代数法) 联立直线与圆的方程消元得到二元一次方程组 (1)0直线与圆相交有两个公共点; (2)=0 直线与圆相切有且只有一个公共点; (3)0 直线与圆相离无公共点,通法,直线与椭圆的位置关系,种类:,相离(没有交点),相切(一个交点),相交(二个交点),相离(没有交点) 相切(一个交点) 相交(二个交点),直线与椭圆的位置关系的判定,代数方法,1.位置关系:相交、相切、相离 2.判别方法(代数法) 联立直线与椭圆的方程消元得到二元一次方程组 (1)0直线与椭圆相交有两个公共点; (2)=0 直线与椭圆相切有且只有一个公共点; (3)0 直线与椭圆相离无公共点,通法,2.直线与椭圆的位置关系,例1.K为何值时,直线y=kx+2和曲线2x2+3y2=6有两个公共点?有一个公共点?没有公共点?,练习1.无论k为何值,直线y=kx+2和曲线 交点情况满足( ) A.没有公共点 B.一个公共点 C.两个公共点 D.有公共点,D,题型一:直线与椭圆的位置关系,分析:直线过定点,练习:已知直线y=x- 与椭圆x2+4y2=2 , 判断它们的位置关系。,解:联立方程组,消去y,0,因为,所以,方程()有两个根,,那么,相交所得的弦的弦长是多少?,则原方程组有两组解.,- (1),由韦达定理,设直线与椭圆交于P1(x1,y1),P2(x2,y2)两点,(1)直线P1P2的斜率为k,知识点2:弦长公式,可推广到任意二次曲线,(2)直线P1P2的斜率不存在时,例1:已知斜率为1的直线L过椭圆 的右焦点,交椭圆于A,B两点,求弦AB之长,题型二:弦长公式,注:当求过焦点的弦长时,由焦半径公式 与韦达定理结合起来求解,题型二:弦长公式,练习.过椭圆 的右焦点与x轴垂直的直线 与椭圆交于A,B两点,求弦长|AB|,题型三:中点弦问题,例2 :已知椭圆 过点P(2,1)引一弦,使弦在这点被 平分,求此弦所在直线的方程.,解:,韦达定理斜率,韦达定理法:利用韦达定理及中点坐标公式来构造,题型三:中点弦问题,例 2 已知椭圆 过点P(2,1)引一弦,使弦在这点被 平分,求此弦所在直线的方程.,点差法:利用端点在曲线上,坐标满足方程,作差构造 出中点坐标和斜率,点,作差,题型三:中点弦问题,直线与椭圆的位置关系综合应用,思考:最大的距离是多少?,P,3、弦中点问题的两种处理方法: (1)联立方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 粉末冶金在船舶推进器制造中的应用考核试卷
- 煤制液体燃料的原料煤选择与处理考核试卷
- 畜牧良种繁殖与新型农业经营主体培育考核试卷
- 2025电视剧拍摄场地租赁合同模板
- 2025茶叶代销合同模板
- 2025建筑工程分包合同样本
- 三级心理咨询师考培训分享
- 苏教版七年级上册语文全册教案2
- 国际贸易合同书文本
- 二零二五办公室文员聘用合同书
- 租房合同范本下载(可直接打印)
- 2025年新高考语文模拟考试试卷(一)(含答案解析)
- 湖北省武汉市部分学校2025届高三第三次模拟考试数学试卷含解析
- 《宜家在华门店扩张战略实施环境及实施途径研究》9700字(论文)
- 华为鸿蒙系统应用开发H14-231 V1.0备考试题库(含答案)
- JGJT46-2024《施工现场临时用电安全技术标准》条文解读
- 2024年江苏泰州市第四人民医院招考聘用高层次人才11人管理单位遴选500模拟题附带答案详解
- 火灾现场危险隐患培训
- 晨检课件完整版本
- 美术教室装修合同模板
- 少年羽毛球教学课程设计
评论
0/150
提交评论