外接球练习题.doc_第1页
外接球练习题.doc_第2页
外接球练习题.doc_第3页
免费预览已结束,剩余2页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、在体积为的球的表面上有A,B,C三点,AB=1,BC=,A,C两点的球面距离为,则球心到平面ABC的距离为 ( )A B C D1 2、已知正方体外接球的体积是,那么正方体的棱长等于A.2 B. C. D.3、若一个底面是正三角形的三棱柱的正视图如图所示,其顶点都在一个球面上,则该球的表面积为(A) (B) (C) (D) 4、各个面都是正三角形的四面体的四个顶点都在一个表面积为的球面上,那么这个四面体的体积为A B C D5、如图,是边长为1的正方体,是高为1的正四棱锥,若点在同一球面上,则该球的表面积为( )A B C D 6、直三棱柱的各顶点都在同一球面上,若,,则此球的表面积等于 。 7、如图,半径为4的球O中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与圆柱的侧面积之差是 .8、点 A,B,C,D在同一球面上,AB=BC=,AC=2,若球的表面积为,则四面体ABCD体积的最大值为9、设棱锥M-ABCD的底面是正方形,且MAMD,MAAB,如果AMD的面积为1,试求能够放入这个棱锥的最大球的半径.参考答案一、选择题1、C 2、D3、B 4、A5、D【解析】按如图所示作辅助线,为球心,设,则,同时由正方体的性质知,则在中,即,解得,所以球的半径,所以球的表面积为,故选D二、填空题6、解:在中,可得,由正弦定理,可得外接圆半径r=2,设此圆圆心为,球心为,在中,易得球半径,故此球的表面积为. 7、答案:解析:设圆柱的底面半径是,母线为,则,侧面积为.由,当且仅当,即,时等号成立,球的表面积为,圆柱的侧面积为,故所求答案为. 8、【考点】球的体积和表面积;棱柱、棱锥、棱台的体积【专题】计算题;空间位置关系与距离【分析】根据几何体的特征,判定外接球的球心,求出球的半径,即可求出球的表面积【解答】解:根据题意知,ABC是一个直角三角形,其面积为1其所在球的小圆的圆心在斜边AC的中点上,设小圆的圆心为Q,球的半径为r,因为球的表面积为,所以4r2=所以r=,四面体ABCD的体积的最大值,底面积SABC不变,高最大时体积最大,就是D到底面ABC距离最大值时,h=r+=2四面体ABCD体积的最大值为SABCh=,故答案为:【点评】本题考查的知识点是球内接多面体,球的表面积,其中分析出何时四面体ABCD的体积的最大值,是解答的关键三、综合题9、分析:关键是找出球心所在的三角形,求出内切圆半径.解: ABAD,ABMA,AB平面MAD,由此,面MAD面AC.记E是AD的中点,从而MEAD.ME平面AC,MEEF.设球O是与平面MAD、平面AC、平面MBC都相切的球.不妨设O平面MEF,于是O是MEF的内心.设球O的半径为r,则r设ADEFa,SAMD1.ME.MF,r-1。当且仅当a,即a时,等号成立.当ADME时,满足条件的球最大半径为-1.点评:涉及球与棱柱、棱锥的切接问题时一般过球心及多面体中的特殊点或线作截面,把空间问题化归为平面问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论