




已阅读5页,还剩80页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Mean Shift Theory and Applications,Yaron Ukrainitz & Bernard Sarel,Agenda,Mean Shift Theory What is Mean Shift ? Density Estimation Methods Deriving the Mean Shift Mean shift properties Applications Clustering Discontinuity Preserving Smoothing Object Contour Detection Segmentation Object Tracking,Mean Shift Theory,Intuitive Description,Distribution of identical billiard balls,Region of interest,Center of mass,Mean Shift vector,Objective : Find the densest region,Intuitive Description,Distribution of identical billiard balls,Region of interest,Center of mass,Mean Shift vector,Objective : Find the densest region,Intuitive Description,Distribution of identical billiard balls,Region of interest,Center of mass,Mean Shift vector,Objective : Find the densest region,Intuitive Description,Distribution of identical billiard balls,Region of interest,Center of mass,Mean Shift vector,Objective : Find the densest region,Intuitive Description,Distribution of identical billiard balls,Region of interest,Center of mass,Mean Shift vector,Objective : Find the densest region,Intuitive Description,Distribution of identical billiard balls,Region of interest,Center of mass,Mean Shift vector,Objective : Find the densest region,Intuitive Description,Distribution of identical billiard balls,Region of interest,Center of mass,Objective : Find the densest region,What is Mean Shift ?,Non-parametric Density Estimation,Non-parametric Density GRADIENT Estimation (Mean Shift),Discrete PDF Representation,PDF Analysis,PDF in feature space Color space Scale space Actually any feature space you can conceive ,A tool for: Finding modes in a set of data samples, manifesting an underlying probability density function (PDF) in RN,Non-Parametric Density Estimation,Assumption : The data points are sampled from an underlying PDF,Assumed Underlying PDF,Real Data Samples,Data point density implies PDF value !,Assumed Underlying PDF,Real Data Samples,Non-Parametric Density Estimation,Assumed Underlying PDF,Real Data Samples,?,Non-Parametric Density Estimation,Parametric Density Estimation,Assumption : The data points are sampled from an underlying PDF,Assumed Underlying PDF,Estimate,Real Data Samples,Kernel Density Estimation Parzen Windows - General Framework,Kernel Properties: Normalized Symmetric Exponential weight decay ?,A function of some finite number of data points x1xn,Kernel Density Estimation Parzen Windows - Function Forms,A function of some finite number of data points x1xn,In practice one uses the forms:,or,Same function on each dimension,Function of vector length only,Kernel Density Estimation Various Kernels,A function of some finite number of data points x1xn,Examples: Epanechnikov Kernel Uniform Kernel Normal Kernel,Kernel Density Estimation,Gradient,Give up estimating the PDF ! Estimate ONLY the gradient,Using the Kernel form:,We get :,Size of window,Kernel Density Estimation,Gradient,Computing The Mean Shift,Computing The Mean Shift,Yet another Kernel density estimation !,Simple Mean Shift procedure: Compute mean shift vector Translate the Kernel window by m(x),Mean Shift Mode Detection,Updated Mean Shift Procedure: Find all modes using the Simple Mean Shift Procedure Prune modes by perturbing them (find saddle points and plateaus) Prune nearby take highest mode in the window,What happens if we reach a saddle point ?,Perturb the mode position and check if we return back,Adaptive Gradient Ascent,Mean Shift Properties,Automatic convergence speed the mean shift vector size depends on the gradient itself. Near maxima, the steps are small and refined Convergence is guaranteed for infinitesimal steps only infinitely convergent, (therefore set a lower bound) For Uniform Kernel ( ), convergence is achieved in a finite number of steps Normal Kernel ( ) exhibits a smooth trajectory, but is slower than Uniform Kernel ( ).,Real Modality Analysis,Tessellate the space with windows,Run the procedure in parallel,Real Modality Analysis,The blue data points were traversed by the windows towards the mode,Real Modality Analysis An example,Window tracks signify the steepest ascent directions,Adaptive Mean Shift,Mean Shift Strengths & Weaknesses,Strengths : Application independent tool Suitable for real data analysis Does not assume any prior shape (e.g. elliptical) on data clusters Can handle arbitrary feature spaces Only ONE parameter to choose h (window size) has a physical meaning, unlike K-Means,Weaknesses : The window size (bandwidth selection) is not trivial Inappropriate window size can cause modes to be merged, or generate additional “shallow” modes Use adaptive window size,Mean Shift Applications,Clustering,Attraction basin : the region for which all trajectories lead to the same mode,Cluster : All data points in the attraction basin of a mode,Mean Shift : A robust Approach Toward Feature Space Analysis, by Comaniciu, Meer,Clustering Synthetic Examples,Simple Modal Structures,Complex Modal Structures,Clustering Real Example,Initial window centers,Modes found,Modes after pruning,Final clusters,Feature space: L*u*v representation,Clustering Real Example,L*u*v space representation,Clustering Real Example,Not all trajectories in the attraction basin reach the same mode,2D (L*u) space representation,Final clusters,Discontinuity Preserving Smoothing,Feature space : Joint domain = spatial coordinates + color space,Meaning : treat the image as data points in the spatial and gray level domain,Image Data (slice),Mean Shift vectors,Smoothing result,Mean Shift : A robust Approach Toward Feature Space Analysis, by Comaniciu, Meer,Discontinuity Preserving Smoothing,The image gray levels, can be viewed as data points in the x, y, z space (joined spatial And color space),Discontinuity Preserving Smoothing,Flat regions induce the modes !,Discontinuity Preserving Smoothing,The effect of window size in spatial and range spaces,Discontinuity Preserving Smoothing Example,Discontinuity Preserving Smoothing Example,Object Contour Detection Ray Propagation,Vessel Detection by Mean Shift Based Ray Propagation, by Tek, Comaniciu, Williams,Accurately segment various objects (rounded in nature) in medical images,Object Contour Detection Ray Propagation,Use displacement data to guide ray propagation,Discontinuity preserving smoothing,Displacement vectors,Vessel Detection by Mean Shift Based Ray Propagation, by Tek, Comaniciu, Williams,Object Contour Detection Ray Propagation,Speed function,Normal to the contour,Curvature,Object Contour Detection,Original image,Gray levels along red line,Gray levels after smoothing,Displacement vectors,Displacement vectors derivative,Object Contour Detection Example,Object Contour Detection Example,Importance of smoothing by curvature,Segmentation,Segment = Cluster, or Cluster of Clusters,Algorithm: Run Filtering (discontinuity preserving smoothing) Cluster the clusters which are closer than window size,Image Data (slice),Mean Shift vectors,Segmentation result,Smoothing result,Mean Shift : A robust Approach Toward Feature Space Analysis, by Comaniciu, Meer /comanici,Segmentation Example,when feature space is only gray levels,Segmentation Example,Segmentation Example,Segmentation Example,Segmentation Example,Segmentation Example,Segmentation Example,Non-Rigid Object Tracking,Non-Rigid Object Tracking,Real-Time,Surveillance,Driver Assistance,Object-Based Video Compression,Mean-Shift Object Tracking General Framework: Target Representation,Mean-Shift Object Tracking General Framework: Target Localization,Start from the position of the model in the current frame,Repeat the same process in the next pair of frames,Mean-Shift Object Tracking Target Representation,Kernel Based Object Tracking, by Comaniniu, Ramesh, Meer,Mean-Shift Object Tracking PDF Representation,Target Model (centered at 0),Target Candidate (centered at y),Mean-Shift Object Tracking Smoothness of Similarity Function,Similarity Function:,Mean-Shift Object Tracking Finding the PDF of the target model,Target pixel locations,A differentiable, isotropic, convex, monotonically decreasing kernel Peripheral pixels are affected by occlusion and background interference,The color bin index (1m) of pixel x,Mean-Shift Object Tracking Similarity Function,Target model:,Target candidate:,Similarity function:,Mean-Shift Object Tracking Target Localization Algorithm,Start from the position of the model in the current frame,Linear approx. (around y0),Mean-Shift Object Tracking Approximating the Similarity Function,Model location:,Candidate location:,Independent of y,Density estimate! (as a function of y),Mean-Shift Object Tracking Maximizing the Similarity Function,The mode of,= sought maximum,Mean-Shift Object Tracking Applying Mean-Shift,Original Mean-Shift:,Find mode of,using,The mode of,= sought maximum,Mean-Shift Object Tracking About Kernels and Profiles,Mean-Shift Object Tracking Choosing the Kernel,Epanechnikov kernel:,A special class of radially symmetric kernels:,Extended Mean-Shift:,Mean-Shift Object Tracking Adaptive Scale,Problem:,The scale of the target changes in time,The scale (h) of the kernel must be adapted,Mean-Shift Object Tracking Results,Feature space: 161616 quantized RGB Target: manually selected on 1st frame Average mean-shift iterations: 4,Mean-Shift Object Tracking Results,Mean-Shift Object Tracking Results,Mean-Shift Object Tracking Results,Feature space: 128128 quantized RG,Mean-Shift Object Tracking The Scale Selection Problem,Kernel too big,Kernel too small,Tracking Through Scale Space Motivation,Spatial localization for several scales,Previous method,Simultaneous localization in space and scale,This method,Mean-shift Blob Tracking through Scale Space, by R. Collins,Lindebergs Theory Selecting the best scale for describing image features,Scale-sp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年急诊科危重病人救治模拟考试卷答案及解析
- 2025年风湿免疫科诊断治疗能力综合评价答案及解析
- 2025年台州市黄岩区公开选调9名公务员模拟试卷及答案详解(考点梳理)
- 2025年消化内科疾病常规药物使用策略模拟试卷答案及解析
- 2025年消化内科胃肠道疾病诊断鉴别考察答案及解析
- 2025年老年医学综合管理能力测验答案及解析
- 2025年眼科常见眼病诊疗规范自测卷答案及解析
- 2025广西百色干部学院招聘教研人员3人考前自测高频考点模拟试题及答案详解(各地真题)
- 2025年营养学疾病营养治疗方案设计评估答案及解析
- 2025江西赣州市面向社会招聘机关工作人员2人考前自测高频考点模拟试题及答案详解(全优)
- 2024-2025学年广东省深圳市梅山中学九年级上学期开学考英语试题及答案
- 2025年合肥公交集团有限公司驾驶员招聘180人笔试参考题库附带答案详解
- 2024年上海市大数据中心招聘真题
- 2025年网络安全监测预警体系建设实施方案评估报告
- 2025年会计继续教育网络答题真题及答案
- 2025年工勤行政事务高级技师技术等级考试试题及答案
- 中国银行招聘笔试真题及答案(可下载)
- 高血压指南培训课件
- 设计文件更改管理办法
- 飞利浦录音笔VTR8000说明书
- 数字赋能教学课件
评论
0/150
提交评论