


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
中考全等三角形复习与研究全等三角形是研究图形的重要工具,只有掌握好全等三角形的有关知识,并能灵活应用才能学好四边形、圆等后续内容,是中考的重要考点之一一、知识要点1两个能够重合的三角形叫做全等三角形,全等三角形的对应边相等,对应角相等2全等三角形的判定方法有(1)SAS;(2)ASA;(3)AAS;(4)SSS对直角三角形全等的判定除以上方法外,还有HL3两个三角形的两边和一角对应相等,或两个三角形的三个角对应相等,这两个三角形不一定全等二、复习指导1应用全等三角形性质解决问题的前提是准确地确定全等三角形的对应边和对应角,其规律主要有以下几点:(1)以对应顶点为顶点的角是对应角;(2)对应顶点所对应的边是对应边;(3)公共边(角)是对应边(角);(4)对顶角是对应角;(5)最大边(角)是对应边(角),最小边(角)是对应边(角) 全等三角形的对应边和对应角可以依据字母的对应位置来确定,如若ABCDEF,说明A与D,B与E,C与F是对应点,则ABC与DEF是对应角,边AC与边DF是对应边2判定两个三角形全等的解题思路: 找夹角SAS 已知两边找另一边SSS 边为角的对边找任一角AAS 找夹角的另一边SAS 已知一边一角 边为角的邻边 找夹边的另一角ASA 找边的对角AAS 找夹边ASA 已知两角找任一边AAS3运用三角形全等可以证明两线段或两角相等,在直接找不到两个全等三角形时,可考虑添加辅助线构造全等三角形三、思想方法1转化思想:应用全等三角形的知识解决测河宽、测池塘宽、测工件内径等实际问题就是转化思想的运用2运动变化思想:在研究三角形全等时,经常会出现三角形按照某种特定的规律变化,需要运用运动变化的思想进行解决3构造图形法:在直接找不到两个全等三角形时,常常通过平移、对称、旋转等图形变换的方法构造全等三角形4分析综合法:从已知条件出发探索解题途径的方法叫综合法;从结论出发不断寻找使结论成立的条件与已知条件关系的方法叫分析法;两头凑的方法就是综合运用分析综合法去寻找证题的一种方法四、中考新题型(一)添加条件型ECDBA例1:(2006年攀枝花市)如图,点E在AB上,AC=AD,请你添加一个条件,使图中存在全等三角形,并给予证明所添条件为 ,你得到的一对全等三角形是 解析:本题是一道条件和结论同时开放的试题所添条件为等条件中的一个可得到 证明过程略 (二)结论开放型例2:(2006年无锡市)如图,ABC中,ACB90,ACBC,将ABC绕点C逆时针旋转角(090)得到A1B1C1,连结BB1设CB1交AB于D,AlB1分别交AB、AC于E、F(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以证明(ABC与A1B1C1全等除外);(2)当BB1D是等腰三角形时,求;解析:(1)是一道结论开放的试题,由题目所隐含的条件易得CBDC A1F,或AEFB1ED或ACDB1C F以证CBDC A1F为例AC B1A1 C F=AC B1BCD=90,A1 C F=BCDA1 C=BC,A1=CBD=45,CBDC A1F(2) 略(三)阅读归纳型例3:(2006年绍兴市)我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等那么在什么情况下,它们会全等? (1)阅读与证明: 对于这两个三角形均为直角三角形,显然它们全等 对于这两个三角形均为钝角三角形,可证它们全等(证明略) 对于这两个三角形均为锐角三角形,它们也全等,可证明如下: 已知:ABC、A1B1C1均为锐角三角形,AB=A1B1,BC=B1Cl,C=Cl 求证:ABCA1B1C1(请你将下列证明过程补充完整)证明:分别过点B,B1作BDCA于D, B1 D1C1 A1于D1 则BDC=B1D1C1=900, BC=B1C1,C=C1, BCDB1C1D1, BD=B1D1(2)归纳与叙述: 由(1)可得到一个正确结论,请你写出这个结论解:(1)又AB=A1B1,ADB=A1D1B1=90 ADBA1D1B1, A=A1, 又C=C1,BC=B1C1, ABCA1B1C1(2)若ABC、A1B1C1均为锐角三角形或均为直角三角形或均为钝角三角形,AB=A1B1,BC=B1C1,C=C1,则ABCA1B1C1说明:本题的问题情境新颖,既有阅读又有补充证明过程,既有类比又有归纳,突出考查学生的综合素质,别具一格(四)探究猜想型例4:(2005年锦州)如图a,ABC和CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE (1)线段AF和BE有怎样的大小关系?请证明你的结论; (2)将图a中的CEF绕点C旋转一定的角度,得到图b,(1)中的结论还成立吗?作出判断并说明理由; (3)若将图a中的ABC绕点C旋转一定的角度,请你画山一个变换后的图形c(草图即可),(1)中的结论还成立吗?作出判断不必说明理由; (4)根据以上证明、说理、画图,归纳你的发现 解:(1)AF=BE 证明: ABC和CEF是等边三角形,AC=BC,CF=CE,ACF=BCE=60 AFCBEC AF=BE (2) 成立 理由: ABC和CEF是等边三角形, AC=BC,CF=CE,ACB=FCE=60 ACB-FCB=FCE-FCB 即ACF=BCE AFCBEC AF=BE(3) 如图,(1)中的结论仍成立 (4)根据以上证明、说明、画图,归纳如下: 如图a,大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C,则以点C为旋转中心,任意旋转其中一个三角形,都有AF=BE说明:本题让学生经历观察、操作、猜想、验证的探究过程,发展学生分析、概括、综合、逻辑推理的能力,体现了新课程标准强调学生主动参与、勤于动手、乐于探究、经历学习过程的新理念(五)组合探索型例5:(2006扬州市)如图,在ABC和DEF中,D、E、C、F在同一直线上,下面有四个条件,请你在其中选3个作为题设,余下的1个作为结论,写一个真命题,并加以证明ABDE,ACDF,ABCDEF,BECF解:已知:ABDE,A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全日安全培训课件
- 超市劳动合同书
- 瓶装燃气安全使用培训课件
- 安全施工技术管理培训课件
- 东丽区打井工程方案流程(3篇)
- 顶面隔音工程及方案(3篇)
- 电气工程编制方案(3篇)
- 房屋工程维修方案范本(3篇)
- 地铁工程介入方案(3篇)
- 猫咪绘本课件
- 贵州省榕江县2025年上半年事业单位公开遴选试题含答案分析
- 第2课《中国人首次进入自己的空间站》课件
- 能源服务、产品、设备和能源采购控制程序
- 焊装工艺学习课件
- 【个人简历】保洁经理求职个人简历模板
- 绵阳东辰学校五升六预备年级招生考试数学试题
- GB/T 15856.2-2002十字槽沉头自钻自攻螺钉
- 插花艺术发展简史
- 学校防溺水“七不两会”教育(课堂)课件
- 《科学思维与科学方法论》第一章 科学问题与科研选题
- (完整版)电除颤操作评分标准
评论
0/150
提交评论