已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2018版高考数学一轮复习 第五章 平面向量 5.4 平面向量应用举例真题演练集训 理 新人教A版12016四川卷在平面内,定点A,B,C,D满足|,2,动点P,M满足|1,则|2的最大值是()A. B.C. D.答案:B解析:由|知,D为ABC的外心由知,D为ABC的内心,所以ABC为正三角形,易知其边长为2.取AC的中点E,因为M是PC的中点,所以EMAP,所以|max|BE|,则|,故选B.22015福建卷已知,|,|t.若点P是ABC所在平面内的一点,且,则的最大值等于()A13 B15 C19 D21答案:A解析: ,故以A为原点,AB,AC所在直线为坐标轴建立平面直角坐标系不妨设B,C(t,0),则(4,1),故点P的坐标为(4,1)(t4,1)4t171721713.当且仅当4t,即t时(负值舍去)取得最大值13.32015天津卷在等腰梯形ABCD中,已知ABDC,AB2,BC1,ABC60.动点E和F分别在线段BC和DC上,且,则的最小值为_答案:解析:在等腰梯形ABCD中,由ABDC,AB2,BC1,ABC60,可得ADDC1.建立平面直角坐标系如图所示,则A(0,0),B(2,0),C,D,(2,0),(1,0) , E. , F. 2,当且仅当,即时等号成立,符合题意 的最小值为.42016江苏卷如图,在ABC中,D是BC的中点,E,F是AD上的两个三等分点,4,1,则的值是_答案:解析:解法一:以D为坐标原点,BC所在直线为x轴,线段BC的中垂线为y轴建立平面直角坐标系,设B(a,0),C(a,0),A(b,c),则E,F,(ba,c),(ba,c),由b2a2c24,a21,解得b2c2,a2,则(b2c2)a2.解法二:设a,b,则(a3b)(a3b)9|b|2|a|24,(ab)(ab)|b|2|a|21,解得|a|2,|b|2, 则(a2b)(a2b)4|b|2|a|2. 课外拓展阅读 巧解平面向量高考题的5种方法向量是既有大小又有方向的量,具有几何和代数形式的“双重性”,常作为工具来解决其他知识模块的问题在历年高考中都会对该部分内容进行考查,解决这些问题多可利用平面向量的有关知识进行解决基于平面向量的双重性,一般可以从两个角度进行思考:一是利用其“形”的特征,将其转化为平面几何的有关知识进行解决;二是利用其“数”的特征,通过坐标转化为代数中的有关问题进行解决下面对辽宁省的一道高考试题采用5种不同的求解方法进行解答典例若a,b,c均为单位向量,且ab0,(ac)(bc)0,则|abc|的最大值为()A.1 B1C. D2解法一:目标不等式法思路分析解析因为|a|b|c|1,ab0,所以|ab|2a2b22ab2,故|ab|.展开(ac)(bc)0,得ab(ab)cc20,即0(ab)c10,整理,得(ab)c1.而|abc|2(ab)22(ab)cc232(ab)c,所以32(ab)c3211.所以|abc|21,即|abc|1.答案B解法二:向量基底法思路分析解析取向量a,b作为平面向量的一组基底,设cmanb.由|c|1,即|manb|1,可得(ma)2(nb)22mnab1,由题意知,|a|b|1,ab0.整理,得m2n21.而ac(1m)anb,bcma(1n)b,故由(ac)(bc)0,得(1m)anbma(1n)b0,展开,得m(m1)a2n(n1)b20,即m2mn2n0.又m2n21,故mn1.而abc(1m)a(1n)b,故(abc)2(1m)a(1n)b(1m)2a22(1m)(1n)ab(1n)2b2(1m)2(1n)2m2n22(mn)232(mn)又mn1,所以32(mn)1.故|abc|21,即|abc|1.答案B解法三:坐标法思路分析解析因为|a|b|1,ab0,所以a,b.设a,b,c,因为ab,所以OAOB.分别以OA,OB所在的直线为x轴、y轴建立平面直角坐标系,如图所示,则a(1,0),b(0,1),则A(1,0),B(0,1)设C(x,y),则c(x,y),且x2y21.则ac(1x,y),bc(x,1y),故由(ac)(bc)0,得(1x)(x)(y)(1y)0,整理,得1xy0,即xy1.而abc(1x,1y),则|abc|.因为xy1,所以32(xy)1,即|abc|1.所以|abc|的最大值为1.答案B解法四:三角函数法思路分析解析因为|a|b|1,ab0,所以a,b.设a,b,c,因为ab,所以OAOB.分别以OA,OB所在的直线为x轴、y轴建立平面直角坐标系,如图所示,则a(1,0),b(0,1),则A(1,0),B(0,1)因为|c|1,设COA,所以C点的坐标为(cos ,sin )则ac(1cos ,sin ),bc(cos ,1sin ),故由(ac)(bc)0,得(1cos )(cos )(sin )(1sin )0,整理,得sin cos 1.而abc(1cos ,1sin ),则|abc|.因为sin cos 1,所以32(sin cos )1,即|abc|1.所以|abc|的最大值为1.答案B解法五:数形结合法思路分析解析设a,b,c,因为|a|b|c|1,所以点A,B,C在以O为圆心、1为半径的圆上易知ac,bc,|c|.由(ac)(bc)0,可知0,则BCA(因为A,B,C在以O为圆心的圆上,所以A,B,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广东惠州博罗县榕盛城市建设投资有限公司及下属子公司招聘2名工作人员拟聘用人员笔试历年典型考点题库附带答案详解试卷3套
- 2025山东济南高新控股集团有限公司招聘10人笔试历年典型考点题库附带答案详解试卷3套
- 2025安徽泾县宣纸小镇有限公司招聘3人笔试历年备考题库附带答案详解试卷3套
- 2025四川省广安金广建筑有限公司招聘财务部出纳人员1人笔试历年常考点试题专练附带答案详解试卷3套
- 2025年及未来5年市场数据中国外径研磨机行业市场深度分析及投资战略咨询报告
- 机场综合交通枢纽配套工程建设工程方案
- 2025上海地铁招聘96名见习人员笔试历年典型考点题库附带答案详解试卷3套
- 福建公务员考试李杨菲试题及答案
- 凤山公务员考试试题及答案
- 定边公务员考试试题及答案
- 基于EVA模型的北大荒企业价值深度评估与战略洞察
- 客服劳动合同
- 消费品行业投资咨询合同(2篇)
- 2025年针织大圆机项目可行性研究报告
- 结核病科护理工作总结
- 中建室外工程施工方案
- 2024-2025学年人教版小学四年级上学期期中英语试题与参考答案
- (一诊)德阳市高中2022级(2025届)高三第一次诊断考试英语试卷(含答案)
- 2024年初级会计师职称《初级会计实务》考试提分卷(含答案)
- 幼儿园安全隐患举报奖励制度范文(二篇)
- 旅馆治安管理制度及突发事件应急方案治安突发事件应急预案
评论
0/150
提交评论