2018-19学年高中数学第1章常用逻辑用语1.11.1.2充分条件和必要条件学案苏教版.docx_第1页
2018-19学年高中数学第1章常用逻辑用语1.11.1.2充分条件和必要条件学案苏教版.docx_第2页
2018-19学年高中数学第1章常用逻辑用语1.11.1.2充分条件和必要条件学案苏教版.docx_第3页
2018-19学年高中数学第1章常用逻辑用语1.11.1.2充分条件和必要条件学案苏教版.docx_第4页
2018-19学年高中数学第1章常用逻辑用语1.11.1.2充分条件和必要条件学案苏教版.docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1.1.2充分条件和必要条件学习目标:1.结合具体实例,理解充分条件、必要条件和充要条件的意义(重点)2.结合具体命题,学会判断充分条件、必要条件、充要条件的方法(重点、难点)3.培养辩证思维能力自 主 预 习探 新 知教材整理1符号与的含义阅读教材P7上半部分,完成下列问题命题真假“若p则q”为真“若p则q”为假表示方法pqpq读法p推出qp不能推出q用“”、“”填空:(1)x2_x1;(2)ab_acbc;(3)ac2bc2_ab;(4)a,b,c成等差数列_2bac.解析(1)当x2时,一定有x1,故填;(2)当c0时,ab不能推出acbc,故填;(3)因为ac2bc2,且c20,所以ab,故填;(4)a,b,c成等差数列,则bacb,即2bac,故填.答案(1)(2)(3)(4)教材整理2充分、必要条件的含义阅读教材P7中间部分,完成下列问题条件关系含义p是q的充分条件(q是p的必要条件)pqp是q的充要条件pqp是q的充分不必要条件pq,且qpp是q的必要不充分条件pq,且qpp是q的既不充分又不必要条件pq,且qp1判断(正确的打“”,错误的打“”)(1)如果p是q的充分条件,那么命题“若p则q”为真()(2)命题“若p则q”为假,记作“qp”()(3)若p是q的充分条件,则p是唯一的()(4)若“pq”,则q不是p的充分条件,p不是q的必要条件()答案(1)(2)(3)(4)2用“充分不必要”、“必要不充分”、“充要”和“既不充分也不必要”填空(1)“a2b20”是“ab0”的_条件(2)两个三角形全等是这两个三角形相似的_条件(3)“a20”是“a0”的_条件(4)“sin sin ”是“”的_条件解析(1)a2b20成立时,当且仅当ab0.故应填“充要”(2)因为两个三角形全等两个三角形相似,但两个三角形相似两个三角形全等,所以填“充分不必要”(3)因为a20a0,如(2)20,但20不成立;又a0a20,所以“a20”是“a0”的必要不充分条件(4)因为ysin x在不同区间的单调性是不同的,故“sin sin ”是“”的既不充分也不必要条件答案(1)充要(2)充分不必要(3)必要不充分(4)既不充分也不必要合 作 探 究攻 重 难充分、必要条件的判定(1)设a,b是实数,则“ab”是“a2b2”的_条件;(2)在ABC中,角A,B,C所对应的边分别为a,b,c,则“ab”是“sin Asin B”的_条件;(3)设四边形ABCD的两条对角线为AC,BD,则“四边形ABCD为菱形”是“ACBD”的_条件;(4)“x0”是“ln(x1)0”的_条件. 【导学号:71392011】精彩点拨分清条件和结论,利用定义进行判断自主解答(1)当abb不一定推出a2b2,反之也不成立所以“ab”是“a2b2”的既不充分也不必要条件(2)设R是三角形外切圆的半径,R0,由正弦定理,得a2Rsin A,b2Rsin B,sin Asin B,2Rsin A2Rsin B,ab.同理也可以由ab推出sin Asin B所以“ab”是“sin Asin B”的充要条件(3)若四边形ABCD为菱形,则ACBD;反之,若ACBD,则四边形ABCD不一定为菱形故“四边形ABCD为菱形”是“ACBD”的充分不必要条件(4)ln(x1)001x11x0,而(1,0)是(,0)的真子集,所以“x0”是“ln(x1)0是函数f(x)有零点的必要条件;b24ac0;是错误的,因为函数f(x)ax2bxc(a0)有零点时,方程ax2bxc0(a0)有实根,但未必有b24ac0,也有可能0;是正确的,因为b24ac0方程ax2bxc0(a0)无实根函数f(x)ax2bxc(a0)无零点答案充分、必要条件的探求已知数列an的前n项和Snpnq(p0,且p1),求数列an是等比数列的充要条件,并证明. 【导学号:71392012】精彩点拨根据数列的前n项和Sn与数列通项an的关系,先求出数列的通项an,根据数列an为等比数列,探求q所满足的条件,同时要注意充分性的证明自主解答a1S1pq.当n2时,anSnSn1pn1(p1),p0,p1,p.若an为等比数列,则p,p,p0,p1pq,q1.an为等比数列的必要条件是q1.下面证明q1是an为等比数列的充分条件当q1时,Snpn1(p0,p1),a1S1p1;当n2时,anSnSn1pnpn1pn1(p1),an(p1)pn1(p0,p1),p为常数,q1时,数列an为等比数列即数列an是等比数列的充要条件为q1.名师指津1充分、必要条件的探求方法(1)探求条件时,一定要注意题目的问法,不要混淆充分条件与必要条件(2)“A是B的充分条件”与“A的充分条件是B”是两个不同的命题,前者说明AB,后者说明BA,对于必要条件也要类似区分2探求充要条件一般有两种方法(1)等价转化法将原命题进行等价变形或转化,直至获得其成立的充要条件,求解的过程同时也是证明的过程,因为求解的过程的每一步都是等价的,所以不需要将充分性和必要性分开来证(2)非等价转化法先寻找必要条件,即将求充要条件的对象视为结论,寻找使之成立的条件;再证明此条件是该对象的充分条件,即从充分性和必要性两方面说明再练一题2已知方程x2(2k1)xk20,求使方程有两个大于1的根的充要条件解设方程的两根分别为x1,x2,则x1,x2都大于1的充要条件是整理得由根与系数的关系,得解得k2.所以所求的充要条件是k(,2)充分、必要条件的应用探究问题 1若集合AB,那么“xA”是“xB”的什么条件?“xB”是“xA”的什么条件?提示因为AB,所以xA成立时,一定有xB,反之不一定成立,所以“xA”是“xB”的充分不必要条件,而“xB”是“xA”的必要不充分条件2对于集合A和B,在什么情况下,“xA”是“xB”的既不充分也不必要条件?提示当AB且BA时,“xA”是“xB”的既不充分也不必要条件3集合Ax|xa,Bx2若A是B的充要条件,实数a的值确定吗?若集合A是B的充分不必要条件?实数a的值确定吗? 【导学号:71392013】提示当A是B的充要条件时,AB,这时a的值是确定的,即a2;当A是B的充分不必要条件时,AB,这时a的值不确定,实数a的取值范围是(2,)已知p:2x23x20,q:x22(a1)xa(a2)0,若p是q的充分不必要条件,求实数a的取值范围. 【导学号:71392014】精彩点拨先利用不等式的解法确定命题p,q成立的条件,再根据p是q的充分不必要条件确定a的不等式组,求a的取值范围自主解答令Mx|2x23x20x|(2x1)(x2)0,Nx|x22(a1)xa(a2)0x|(xa)x(a2)0x|xa2或xa由已知pq且qp,得MN,或解得a2或1_x0;(2)ab_a2b2;(3)a2b22ab_ab.解析(1)x10,故填“”;(2)因为2349,故填“”;(3)a2b22ab(ab)20ab0ab,故填“”答案(1)(2)(3)2设xR,则“2x0”是“|x1|1”的_条件解析由2x0得x2.由|x1|1得0x2.x20x2,0x2x2,故“2x0”是“|x1|1”的必要不充分条件答案必要不充分3“(2x1)x0”是“x0”的_条件解析由(2x1)x0,得x或x0,所以应填“必要不充分”答案必要不充分4不等式ax22xa0恒成立的充要条件是_. 【导学号:71392015】解析据题意有解得a1,所以不等式ax22xa0恒成立的充要条件是a1.答案a15指出下列各题中,命题p是命题q的什么条件(在“充分不必要条件”、“必要不充分条件”、“充要条件”和“既不充分也不必要条件”中选出一种)(1)p:|x1|4,q:x25x6;(2)p:直线l上不同的两点A,B到平面的距离相等,q: l;(3)已知平面,直线l,直线m,p:l,q

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论