




已阅读5页,还剩45页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三讲 柯西不等式与排序不等式 一 二维形式的柯西不等式,【自主预习】 二维形式的柯西不等式,(ac+bd)2,【即时小测】 1.已知2x2+y2=1,则2x+y的最大值为 ( ) A. B.2 C. D.3 【解析】选C.3=(2x2+y2)(2+1)(2x+y)2, 所以- 2x+y . 即2x+y的最大值为 .,2.已知 =1,则以下成立的是( ) A.a2+b21 B.a2+b2=1 C.a2+b21 D.a2b2=1,【解析】选B.由柯西不等式,得 a2+(1-a2)(1-b2)+b2=1, 当且仅当 时,上式取等号, 所以ab= 化为a2b2=(1-a2)(1-b2), 于是a2+b2=1.,3.设a,b,m,nR,且a2+b2=5,ma+nb=5,则 的 最小值为_. 【解析】由柯西不等式知(a2+b2)(m2+n2)(am+bn)2, 又a2+b2=5,ma+nb=5, 所以m2+n25,所以 答案:,【知识探究】 探究点 二维形式的的柯西不等式 1.在二维形式的柯西不等式的代数形式中,取等号的 条件可以写成 吗? 提示:不可以.当b=d=0时,等号成立,但 不成立.,2.用柯西不等式求最值时的关键是什么? 提示:利用柯西不等式求最值问题,通常设法在不等式一边得到一个常数,并寻求不等式等号成立的条件.,【归纳总结】 1.柯西不等式三种形式的关系 根据向量的意义及其坐标表示不难发现二维形式的柯西不等式及二维形式的三角不等式均可看作是柯西不等式的向量形式的坐标表示.,2.理解并记忆三种形式取“=”的条件 (1)代数形式中当且仅当ad=bc时取等号. (2)向量形式中当 =k 或 =0时取等号. (3)三角形式中当P1(x1,y1),P2(x2,y2),O(0,0)三点共线且P1,P2在原点O两旁时取等号.,3.“二维”的含义 “二维”是对向量的个数来说的,在平面上一个向量有两个量:横坐标与纵坐标,因此“二维”就要有四个量,还可以认为是四个数组合成的一种不等关系.,4.二维形式的柯西不等式的变式 (1) |ac+bd|. (2) |ac|+|bd|. (3) ac+bd.,类型一 利用柯西不等式证明不等式 【典例】求证: 【解题探究】本例证明的关键是什么? 提示:关键是根据不等式的结构特征,改变一下多项式的形态结构,达到利用柯西不等式解题的目的.,【证明】因为 =(x12+x22)+(y12+y22)+ 由柯西不等式,得(x12+x22)( y12+y22)(x1y1+x2y2)2, 其中当且仅当x1y2=x2y1时,等号成立.,所以 x1y1+x2y2, 所以 (x12+x22)+(y12+y22) +2(x1y1+x2y2)=(x1+y1)2+(x2+y2)2. 所以 其中等号当且仅当x1y2=x2y1时成立.,【方法技巧】利用柯西不等式的代数形式证明不等式的方法 利用柯西不等式的代数形式证明某些不等式时,有时需要将待证不等式进行变形,以具备柯西不等式的运用条件,这种变形往往要认真分析题目的特征,根据题设条件,利用添项、拆项、分解、组合、配方、数形结合等方法,才能找到突破口.,【变式训练】1.设a,b,c为正数,求证: + + (a+b+c). 【解题指南】根据不等式的结构,分别使用柯西不等式.,【证明】由柯西不等式: a+b, 即 a+b. 同理 b+c, c+a.,将上面三个同向不等式相加得 ( + + )2(a+b+c), 于是 + + (a+b+c).,2.已知a1,a2,b1,b2为正实数,求证:(a1b1+a2b2) ( + )(a1+a2)2. 【证明】(a1b1+a2b2)( + ) =( )2+( )2( )2+( )2 ( + )2 =(a1+a2)2.,类型二 利用柯西不等式求最值 【典例】已知x,y,a,bR+,且 =1,求x+y的最 小值.,【解题探究】解答本例如何将x+y变形,向着柯西不 等式的形式转化? 提示:关键是构造两组数 使得x+y=,【解析】构造两组实数 因为x,y,a,bR+, =1, 所以x+y=( )2+( )2,当且仅当 等号成立. 所以(x+y)min=( + )2.,【延伸探究】 1.若把本例中的题设条件“a,bR+且 =1” 改为“ =2”,结果如何?,【解析】因为 =2,所以x+y= 当且仅当 时等号成立, 所以(x+y)min= .,2.把本例已知改为 ,试比较x2+y2与(a+b)2 的大小. 【解析】由已知及柯西不等式得 x2+y2=(x2+y2) =(a+b)2. 即x2+y2(a+b)2.,【方法技巧】利用二维形式的柯西不等式求最值的技巧 (1)求某些解析式的最小值时,要把这个解析式看成柯西不等式的左边构造不等式.,(2)求某个解析式的最大值时,要把这个解析式看成柯西不等式的右边构造不等式.在构造过程中系数的选择是关键.,【变式训练】 1.已知x,yR,且xy=1, 的最小值为( ) A.4 B.2 C.1 D. 【解析】选A. 当且仅当x=y=1等号成立.,2.(2015陕西高考)已知关于x的不等式|x+a|b的 解集为x|2x4. (1)求实数a,b的值.(2)求 的最大值.,【解析】(1)由|x+a|b,得-b-axb-a, 则 解得a=-3,b=1.,当且仅当 即t=1时等号成立, 故,【补偿训练】设a,bR,且a2+b2=10,求3a+b的最大值与最小值. 【解题指南】3a+b是两部分和的形式,将其看作ac+bd的结构,利用柯西不等式求其最值.,【解析】利用柯西不等式得, (3a+b)2=(a3+b1)2(a2+b2)(32+12) =1010=100, 即(3a+b)2100, 所以|3a+b|10,-103a+b10, 当且仅当a=3b时,等号成立.,又a2+b2=10, 所以a2=9,b2=1. 所以当a=-3,b=-1时,3a+b有最小值为-10; 当a=3,b=1时,3a+b有最大值为10.,类型三 二维形式柯西不等式向量形式的应用 【典例】设a0,b0,且a+b=1, 求证:,【解题探究】如何构造向量,用向量形式的柯西不 等式证明? 提示:可构造如下向量形式:,【证明】令 则| |= 而| |= 又| |= ,所以| | |= , 由| | | |,得,【延伸探究】在本例题设条件下,如何证明:(ax+by)2ax2+by2(其中x0,y0).,【证明】设m=( x, y),n=( , ), 则|ax+by|=|mn|m|n| = = 所以(ax+by)2ax2+by2.,【方法技巧】应用二维形式柯西不等式向量形式求最 值及证明不等式的技巧 在应用二维形式柯西不等式向量形式求式子的最值或 证明不等式时要根据式子的结构特征构造两个向量,通 常我们使构造的向量满足积为待求式子或待证不等式 一侧的形式,再利用柯西不等式的向量形式求解或证明.,【变式训练】 1.已知abc,若 恒成立,则k的最大 值为_.,【解析】设a= ,b= 由|ab|a|b|得2 即 ,当且仅当a-b=b-c即a+c=2b时, 等号成立.故kmax=4. 答案:4,2.求函数y= 的最大值及最小值. 【解析】由原函数式得2sinx+(3-y)cosx=4-2y, 设a=(2,3-y),b=(sinx,cosx), 由|ab|a|b|得|4-2y| , 解得 y3,当且仅当 时,等号成立. 故最大值及最小值分别为3与 .,自我纠错 求函数的最值 【典例】已知实数x,y满足 =1,求x2+2y2 的最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心理复习试题附答案
- 组织行为学(期中考试题)复习试题及答案
- 软件设计师考试模拟题及答案解析
- 项目启动阶段的关键活动试题及答案
- 公共政策中的经济学分析试题及答案
- 一年级正版试卷题目及答案
- 国际政治与国内经济的相互关系试题及答案
- 软件设计师考试界面设计试题及答案
- 西方政治制度与公共事务管理的有效性试题及答案
- 网络工程师考试后备分析与试题及答案
- 2025-2030中国市政工程建设行业市场发展前瞻及投资战略研究报告
- 2025年客户体验管理:存量时代银行的核心竞争力白皮书-瑞和数智
- 数据治理与数据质量管理试题及答案
- SL631水利水电工程单元工程施工质量验收标准第1部分:土石方工程
- 2025年湖南出版中南传媒招聘笔试参考题库含答案解析
- GB/T 44880-2024因果矩阵
- (高清版)TDT 1075-2023 光伏发电站工程项目用地控制指标
- 谈谈如何做好科研工作课件
- 示范区精装修成品保护
- JISG3506-2004高碳钢盘条(中文版)
- 公路交通工程及安全设施施工指导意见
评论
0/150
提交评论