已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
怎样证明面面垂直 怎样证明面面垂直 如果一平面经过另一平面的垂线,那么这两个平面垂直。(面面垂直判定定理) 为方便,下面#后的代表向量。 #cd=#bd-#bc,#ac=#bc-#ba,#ad=#bd-#ba. 对角线的点积:#ac#bd=(#bc-#ba)#bd=#bc#bd-#ba#bd 两组对边平方和分别为: ab2+cd2=ab2+(#bd-#bc)2=ab2+bd2+bc2-2#bd#bc ad2+bc2=(#bd-#ba)2+bc2=bd2+ba2+bc2-2#bd#ba 则ab2+cd2=ad2+bc2等价于#bd#bc=#bd#ba等价于#ac#bd=0 所以原命题成立,空间四边形对角线垂直的充要条件是两组对边的平方和相等 证明一个面上的一条线垂直另一个面;首先可以转化成 一个平面的垂线在另一个平面内,即一条直线垂直于另一个平面 然后转化成 一条直线垂直于另一个平面内的两条相交直线 也可以运用两个面的法向量互相垂直。 这是解析几何的方法。 2 一、初中部分 1利用直角三角形中两锐角互余证明 由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90,即直角三角形的两个锐角互余。 2勾股定理逆定理 3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。 二、高中部分 线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。 如果一平面经过另一平面的垂线,那么这两个平面垂直。(面面垂直判定定理) 1向量法两条直线的方向向量数量积为0 2斜率两条直线斜率积为-1 3线面垂直,则这条直线垂直于该平面内的所有直线 一条直线垂直于三角形的两边,那么它也垂直于另外一边 4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。 5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。 3高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑): .平行关系: 线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。 线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。 面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。 .垂直关系: 线线垂直:1.直线所成角为90。2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。 线面垂直:1.一条直线与一个平面内的任一直线垂直。2.一条直线与一个平面内的两条相交直线都垂直。3.面面垂直的性质。4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。 面面垂直:1.面面所成二面角为直二面角。2.一个平面过另一平面的垂线,那么这两个平面垂直。 如何证明面面垂直 设p是三角形abc所在平面外的一点,p到a,b,c三点的距离相等,角bac为直角,求证:平面pcb垂直平面abc 过p作pq面abc于q,则q为p在面abc的投影,因为p到a,b,c的距离相等,所以有qa=qb=qc,即q为三角形abc的中心,因为角bac为直,所以q在线段bc上,所以在面pcb上有线段pq平面abc,故平面pcb平面abc 2 证明一个面上的一条线垂直另一个面;首先可以转化成 一个平面的垂线在另一个平面内,即一条直线垂直于另一个平面 然后转化成 一条直线垂直于另一个平面内的两条相交直线 也可以运用两个面的法向量互相垂直。 这是解析几何的方法。 2 一、初中部分 1利用直角三角形中两锐角互余证明 由直角三角形的定义与三角形的内角和定理可知直角三角形的两个锐角和等于90,即直角三角形的两个锐角互余。 2勾股定理逆定理 3圆周角定理的推论:直径所对的圆周角是直角,一个三角形的一边中线等于这边的一半,则这个三角形是直角三角形。 二、高中部分 线线垂直分为共面与不共面。不共面时,两直线经过平移后相交成直角,则称两条直线互相垂直。 1向量法两条直线的方向向量数量积为0 2斜率两条直线斜率积为-1 3线面垂直,则这条直线垂直于该平面内的所有直线 一条直线垂直于三角形的两边,那么它也垂直于另外一边 4三垂线定理在平面内的一条直线,如果和穿过这个平面的一条斜线在这个平面内的射影垂直,那么它也和这条斜线垂直。 5三垂线定理逆定理如果平面内一条直线和平面的一条斜线垂直,那么这条直线也垂直于这条斜线在平面内的射影。 3高中立体几何的证明主要是平行关系与垂直关系的证明。方法如下(难以建立坐标系时再考虑): .平行关系: 线线平行:1.在同一平面内无公共点的两条直线平行。2.公理4(平行公理)。3.线面平行的性质。4.面面平行的性质。5.垂直于同一平面的两条直线平行。 线面平行:1.直线与平面无公共点。2.平面外的一条直线与平面内的一条直线平行。3.两平面平行,一个平面内的任一直线与另一平面平行。 面面平行:1.两个平面无公共点。2.一个平面内的两条相交直线分别与另一平面平行。 .垂直关系: 线线垂直:1.直线所成角为90。2.一条直线与一个平面垂直,那么这条直线与平面内的任一直线垂直。 线面垂直:1.一条直线与一个平面内的任一直线垂直。2.一条直线与一()个平面内的两条相交直线都垂直。3.面面垂直的性质。4.两条平行直线中的一条垂直与一个平面,那么另一直线也与此平面垂直。5.一条直线垂直与两个平行平面中的一个,那么这条直线也与另一平面垂直。 面面垂直:1.面面所成二面角为直二面角。2.一个平面过另一平面的垂线,那么这两个平面垂直。 数学面面垂直例题 例4答案: 例8答案:取ac的中点为o,连接op、ob。ao=oc,pa=pc,故po垂直 ac 怎样证明面面平行 线线平行线面平行如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。 线面平行线线平行如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。 线面平行面面平行如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。 面面平行线线平行如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 线线垂直线面垂直如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面。 线面垂直线线平行如果连条直线同时垂直于一个平面,那么这两条直线平行。 线面垂直面面垂直如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。 线面垂直线线垂直线面垂直定义:如果一条直线a与一个平面内的任意一条直线都垂直,我们就说直线a垂直于平面。 面面垂直线面垂直如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面。 三垂线定理如果平面内的一条直线垂直于平面的血现在平面内的射影,则这条直线垂直于斜线。 2 证明:平面平面 平面和平面没有公共点 又a在平面上,b在平面上 直线a、b没有公共点 又=a,=b a在平面上,b在平面上 ab. 3 用反证法 命题:已知,ab,求证:ab 证明:假设ab不平行于 则ab交于点p,点p 又因为pab,所以p 、有公共点p,与命题不符,所以ab。 4 【直线与平面平行的判定】 定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 【判断直线与平面平行的方法】 (1)利用定义:证明直线与平面无公共点; (2)利用判定定理:从直线与直线平行得到直线与平面平行; (3)利用面面平行的性质:两个平面平行,则一个平面内的直线必平行于另一个 5 用反证法 命题:已知,ab,求证:ab 证明:假设ab不平行于 则ab交于点p,点p 又因为pab,所以p 、有公共点p,与命题不符,所以ab。 ?
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025重庆医科大学附属第二医院JCTH杂志社英文编辑(编外)招聘1人考试笔试备考题库及答案解析
- 2025湖南盐业集团有限公司所属企业招聘(79人)考试笔试模拟试题及答案解析
- 南充环境集团有限责任公司2025年下半年员工招聘(一)考试笔试备考题库及答案解析
- 2025辽宁丹东市宽甸满族自治县融媒体中心面向普通高校招聘急需紧缺人才11人考试笔试备考试题及答案解析
- 南部县公开考核招聘2026届部属公费师范毕业生和国家优师计划毕业生(第二批)笔试考试参考试题及答案解析
- 武汉市汉口重点初级中学招聘教师3人考试笔试模拟试题及答案解析
- 2025交投集团所属设计院招聘13人考试笔试备考题库及答案解析
- 2026厦门国际银行秋季校园招聘笔试考试参考试题及答案解析
- 2025内蒙古锡林郭勒盟胃泰医院招聘10人笔试考试备考试题及答案解析
- 2025前三季度安徽省汽车市场分析报告
- 体育-小学田径体能:灵敏练习及身体移动教学设计与教案
- ABB机器人 程序编写实战
- 盘扣式卸料平台施工方案
- 2024年第九届“学宪法、讲宪法”竞赛题库试题及答案
- 重型设备搬运方案
- 辽医药单招语文考试复习题库(含答案)
- 充电基础设施与自动驾驶技术协同发展研究
- 纪委日常监督培训课件
- 植物生理学实验指导
- 干部履历表(中共中央组织部2015年制)
- 新能源汽车电力电子技术全套教学课件
评论
0/150
提交评论