




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题:1.4 算法案例班级: 姓名: 学号: 第 学习小组【学习目标】1、 通过了解中国古代算法案例,体会中国古代数学对世界数学发展的贡献【课前预习】认真阅读课本,了解案例的算法设计思想。【课堂研讨】【案例1】韩信是秦末汉初的著名军事家,据说有一次汉高祖刘邦在卫士的簇拥下来到练兵场,刘邦问韩信有什么办法,不要逐个报数,就能知道场上士兵的人数韩信先令士兵排成3列纵队,结果有2人多余;接着他立刻下令将队形改为5列纵队,这一改,又多出3人;随后他又下令改为7列纵队,这一次又剩下2人无法成整行韩信看此情形,立刻报告共有士兵2333人众人都愣了,不知韩信用什么办法清点出准确人数的这个故事是否属实,已无从查考,但这个故事却引出一个著名的数学问题,即闻名世界的“孙子问题”这种神机妙算,最早出现在我国算经十书之一的孙子算经中,原文是:“今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?答曰:二十三”所以人们将这种问题的通用解法称为“孙子剩余定理”或“中国剩余定理”【算法设计思想】“孙子问题”相当于求关于的不定方程组的整数解设所求的数为,根据题意,应同时满足下列三个条件:(1)被除后余,即;(2)被除后余,即;(3)被除后余,即;首先,从开始检验条件,若个条件中有任何一个不满足,则递增,当同时满足个条件时,输出【流程图】 【伪代码】【案例2】写出求两个正整数的最大公约数的一个算法公元前3世纪,欧几里得介绍了求两个正整数的最大公约数的方法,即求出一列数:,这列数从第三项开始,每一项都是前两项相除所得的余数(即),余数等于的前一项,即是和的最大公约数,这种方法称为“欧几里得辗转相除法”【算法设计思想】欧几里得展转相除法求两个正整数的最大公约数的步骤是:计算出的余数,若,则即为的最大公约数;若,则把前面的除数作为新的被除数,把余数作为新的除数,继续运算,直到余数为,此时的除数即为的最大公约数求的最大公约数的算法为: 输入两个正整数; 如果,那么转,否则转; ; ; ,转; 输出【流程图】 【伪代码】【案例3】写出方程在区间内的一个近似解(误差不超过)的一个算法【算法设计思想】如下图:如果设计出方程在某区间内有一个根,就能用二分搜索求得符合误差限制的近似解算法步骤可表示为: 取的中点,将区间一分为二; 若,则就是方程的根,否则判断根在的左侧还是右侧; 若,则,以代替; 若,则,以代替; 若,计算终止,此时,否则转【流程图】 【伪代码】 【学后反思】课题:1.4 算法案例检测案班级: 姓名: 学号: 第 学习小组【课堂检测】1下面一段伪代码的目的是_ ,While cmn While 2在直角坐标系中作出函数和的图像,根据图像判断方程的解的范围,再用二分法求这个方程的近似解(误差不超过),并写出这个算法的伪代码,画出流程图【课后巩固】1一种放射性物质不断变化为其它物质,每经过一年剩留下来的物质的质量约为原来,那么,约经过多少年,剩留的质量是原来的一半?试写出运用二分法计算这个近似值的伪代码2设计一个算法,计算两个正整数的最小公倍数课题:1.4 算法案例检测案班级: 姓名: 学号: 第 学习小组【课堂检测】1下面一段伪代码的目的是_ ,While cmn While 2在直角坐标系中作出函数和的图像,根据图像判断方程的解的范围,再用二分法求这个方程的近似解(误差不超过),并写出这个算法的伪代码,画出流程图【课后巩固】1一种放射性物质不断变化为其它物质,每经过一年剩
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025安徽宿州市立医院招聘编外人员42人考前自测高频考点模拟试题附答案详解(突破训练)
- 2025年甘肃酒泉肃州区教育事业发展服务中心选拔工作人员模拟试卷及1套参考答案详解
- 2025年2月广东广州市海珠区人民法院招聘劳动合同制法官助理、书记员招聘拟聘人选考前自测高频考点模拟试题及答案详解一套
- 2025昆明市盘龙区双龙街道卫生院招聘编外人员考前自测高频考点模拟试题及答案详解(夺冠)
- 2025江苏连云港农业农村局招聘1人考前自测高频考点模拟试题及答案详解(名师系列)
- 2025年甘肃临夏康乐县基层农技推广体系改革与建设项目特聘农技员招募考前自测高频考点模拟试题及答案详解(新)
- 2025河南郑州巩义市总医院招聘专业技术人员50人考前自测高频考点模拟试题及完整答案详解
- 2025安徽黄山市黄山区磐基砂石料经营有限公司招聘工作人员考前自测高频考点模拟试题及参考答案详解
- 2025江苏苏州卫生职业技术学院招聘35人考前自测高频考点模拟试题参考答案详解
- 2025甘肃张掖市教育局培黎职业学院引进高层次人才14人模拟试卷附答案详解(考试直接用)
- 武松的课件教学课件
- 大单元教学设计课件讲解
- 城市市容管理课件
- 《铁路运输安全管理》课件-第三章 运输安全管理事项
- 公证在绿色金融中的应用-洞察阐释
- 肝囊肿的护理查房
- 公司厂房出租管理制度
- 2025至2030年中国物联网金融行业市场竞争力分析及发展策略分析报告
- 2025年锑矿合作协议书
- 2025年中考历史总复习《中国历史》八年级上册知识要点汇编
- 工程带班合同协议
评论
0/150
提交评论