xx届高三数学全称量词与存在量词6_第1页
xx届高三数学全称量词与存在量词6_第2页
xx届高三数学全称量词与存在量词6_第3页
xx届高三数学全称量词与存在量词6_第4页
xx届高三数学全称量词与存在量词6_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 / 8 XX 届高三数学全称量词与存在量词 6 本资料为 WoRD文档,请点击下载地址下载全文下载地址 全称量词与存在量词(二)量词否定 教学目标:利用日常生活中的例子和数学的命题介绍对量词命题的否定,使学生进一步理解全称量词、存在量词的作用 . 教学重点:全称量词与存在量词命题间的转化; 教学难点:隐蔽性否定命题的确定; 课型:新授课 教学手段:多媒体 教学过程: 一、创设情境 数学命题中出现 “ 全部 ” 、 “ 所有 ” 、 “ 一切 ” 、 “ 任何 ” 、“ 任意 ” 、 “ 每一个 ” 等与 “ 存在着 ” 、 “ 有 ” 、 “ 有些 ” 、“ 某个 ” 、 “ 至 少有一个 ” 等的词语,在逻辑中分别称为全称量词与存在性量词(用符号分别记为 “” 与 “” 来表示);由这样的量词构成的命题分别称为全称命题与存在性命题。在全称命题与存在性命题的逻辑关系中,都容易判断,但它们的否定形式是我们困惑的症结所在。 二、活动尝试 问题 1:指出下列命题的形式,写出下列命题的否定。 ( 1)所有的矩形都是平行四边形; ( 2)每一个素数都是奇数; 2 / 8 ( 3) xR, x2-2x+10 分析:( 1) ,否定:存在一个矩形不是平行四边形; ( 2),否 定:存在一个素数不是奇数; ( 3),否定: xR, x2-2x+10; ( 2)任何三角形都不是等边三角形; ( 3)任何函数都有反函数; ( 4)对于所有的四边形,它的对角线不可能互相垂直或平分; 从集合的运算观点剖析: , 四、数学理论 1.全称命题、存在性命题的否定 一般地,全称命题 P: xm,有 P( x)成立;3 / 8 其否定命题 P 为: xm, 使 P( x)不成立。存在性命题 P: xm,使 P( x)成立;其否定命题 P 为: xm,有 P( x)不成立。 用符号 语言表示: P:m,p(x )否定为P:m,P( x) P:m,p(x )否定为P:m,P( x) 在具体操作中就是从命题 P 把全称性的量词改成存在性的量词,存在性的量词改成全称性的量词,并把量词作用范围进行否定。即须遵循下面法则:否定全称得存在,否定存在得全称,否定肯定得否定,否定否定得肯定 . 2.关键量词的否定 词 语是一定是都是大于小于且 词语的否定不是一定不是不都是小于或等于大于或等于或 词语必有一个至少有 n个至多有一个所有 x成立所有 x不成立 词语的否定一个也没有至多有 n-1个至少有两个存在一个 x不成立存在有一个成立 五、巩固运用 例 1 写出下列全称命题的否定: ( 1) p:所有人都晨练; 4 / 8 ( 2) p: xR, x2 x+10; ( 3) p:平行四边形的对边相等; ( 4) p: $xR , x2 x+1 0; 分析:( 1) P:有的人不晨练;( 2) $xR , x2 x+10 ;( 3)存在平行四边形,它的的对边不相等;( 4)xR, x2 x+10 ; 例 2 写出下列命题的否定。 ( 1)所有自然数的平方是正数。 ( 2)任何实数 x 都是方程 5x-12=0 的根。 ( 3)对任意实数 x,存在实数 y,使 x+y 0. ( 4)有些质数是奇数。 解:( 1)的否定:有些自然数的平方不是正数。 ( 2)的否定:存在实数 x 不是方程 5x-12=0的根。 ( 3)的否定:存在实数 x,对所有实数 y,有 x+y0 。 ( 4)的否定:所有的质数都不是奇数。 解 题中会遇到省略了 “ 所有,任何,任意 ” 等量词的简化形式,如 “ 若 x 3,则 x2 9” 。在求解中极易误当为简单命题处理;这种情形下时应先将命题写成完整形式,再依据法则来写出其否定形式。 例 3 写出下列命题的否定。 ( 1)若 x2 4 则 x 2.。 ( 2)若 m0, 则 x2+x-m=0 有实数根。 5 / 8 ( 3)可以被 5 整除的整数,末位是 0。 ( 4)被 8 整除的数能被 4 整除。 ( 5)若一个四边形是正方形,则它的四条边相等。 解( 1)否定:存在实数,虽然满足 4,但 2 。或者说:存在小于或等于 2 的数,满足 4。(完整表达为对任意的实数 x,若 x2 4 则 x 2) ( 2)否定:虽然实数 m0, 但存在一个,使 +-m=0无实数根。(原意表达:对任意实数 m,若 m0, 则 x2+x-m=0有实数根。) ( 3)否定:存在一个可以被 5 整除的整数,其末位不是 0。 ( 4)否定:存在一个数能被 8 整除,但不能被 4 整除 .(原意表达为所有能被 8 整除的数都能被 4 整除 ) ( 5)否定:存在一个四边形,虽然它是正方形,但四条边中至少有两条不相等。(原意表达为无论哪个四边形,若它是正方形,则它的四条边中任何两条都相等。) 例 4 写出下列命题的非 命题与否命题,并判断其真假性。 ( 1) p:若 x y,则 5x; ( 2) p:若 x2+x 2,则 x2-x 2; ( 3) p:正方形的四条边相等; ( 4) p:已知 a,b 为实数,若 x2+ax+b0 有非空实解集,则 a2-4b0 。 解:( 1) P:若 x y,则 5x ;假命题 否命题:若 xy ,则 5x ;真命题 6 / 8 ( 2) P:若 x2+x 2,则 x2-x2 ;真命题 否命题:若 x2+x2 ,则 x2-x2 );假命题。 ( 3) P:存在一个四边形,尽管它 是正方形,然而四条边中至少有两条边不相等;假命题。 否命题:若一个四边形不是正方形,则它的四条边不相等。假命题。 ( 4) P:存在两个实数 a,b,虽然满足 x2+ax+b0有非空实解集,但使 a2-4b 0。假命题。 否命题:已知 a,b 为实数,若 x2+ax+b0 没有非空实解集,则 a2-4b 0。真命题。 评注:命题的否定与否命题是完全不同的概念。其理由: 1任何命题均有否定,无论是真命题还是假命题;而否命题仅针对命题 “ 若 P 则 q” 提出来的。 2命题的否定(非)是原命题的矛盾命 题,两者的真假性必然是一真一假,一假一真;而否命题与原命题可能是同真同假,也可能是一真一假。 3原命题 “ 若 P 则 q” 的形式,它的非命题 “ 若 p,则q” ;而它的否命题为 “ 若 p ,则 q” ,既否定条件又否定结论。 六、回顾反思 在教学中,务必理清各类型命题形式结构、性质关系,才能真正准确地完整地表达出命题的否定,才能避犯逻辑性错7 / 8 误,才能更好把逻辑知识负载于其它知识之上,达到培养和发展学生的逻辑思维能力。 七、课后练习 1命题 p:存在实数 m,使方程 x2 mx 1 0 有实数根,则 “ 非 p” 形 式的命题是() A.存在实数 m,使得方程 x2 mx 1 0 无实根; B.不存在实数 m,使得方程 x2 mx 1 0 有实根; c.对任意的实数 m,使得方程 x2 mx 1 0 有实根; D.至多有一个实数 m,使得方程 x2 mx 1 0 有实根; 2有这样一段演绎推理是这样的 “ 有些有理数是分数,整数是有理数,则整数是分数 ” 结论显然是错误的,是因为() A大前提错误 B小前提错误 c推理形式错误 D非以上错误 3命题 “xR , x2-x+30” 的否定是 4 “ 末位 数字是 0 或 5 的整数能被 5 整除 ” 的 否定形式是 否命题是 5写出下列命题的否定,并判断其真假: ( 1) p: mR ,方程 x2+x-m=0 必有实根; ( 2) q: R,使得 x2+x+10 ; 6写出下列命题的 “ 非 P” 命题,并判断其真假: ( 1)若 m1,则方程 x2-2x+m=0 有实数根 8 / 8 ( 2)平方和为 0 的两个实数都为 0 ( 3)若是锐角三角形,则的任何一个内角是锐角 ( 4)若 abc=0,则 a,b,c中至少有一为 0 ( 5)若 (x-1)(x-2)=0,则 x1,x2 八、参考答案: 1 B 2 c 3 xR, x2-x+30 4否定形式:末位数是 0 或 5 的整数,不能被 5 整除 否命题:末位数不是 0 且不是 5 的整数,不能被 5 整除 5( 1) p: mR ,方程 x2+

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论