


免费预览已结束,剩余42页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
工程电磁场数值计算与仿真实验报告 学 院: 信息工程 系: 电子信息工程 专 业: 通信工程 班 级: 通信133班 学 号: 6102213930 学生姓名: 陈佳 日 期: 2016.06.16 实验一 交叉耦合滤波器设计与仿真一、设计指标要求:中心频率:910MHz带宽:40MHz带内反射: 20dB带外抑制:在MHz处20dB此滤波器通过三腔微带结构(环形谐振器)实现。选用介质板的相对介电常数为r=1.8,厚度为h =1.27mm。腔体为半波长方腔结构,腔间耦合程度通过腔间距离来控制,使得滤波器谐振频率在910MHz。 最终获得反射系数和参数系数曲线的仿真结果。二、实验设备:PC机、HFSS仿真软件。三、设计原理:具有带外有限传输零点的滤波器,常常采用谐振腔多耦合的形式实现。这种形式的特点是在谐振腔级联的基础上,非相邻腔之间可以相互耦合,即”交叉耦合”甚至可以采用源与负载也与谐振腔耦合,以及源与负载之间的耦合。HFSS仿真实现对滤波器贴片和馈电的建模,然后介绍端口和边界的设置,最后生成了反射系数和传输系数曲线的仿真结果。滤波器采用三腔微带环形滤波器,其耦合矩阵为:四、设计仿真步骤:(1)建立新的工程为了方便建立模型,在ToolOptionsHFSS Options中将Duplicate boundaries with geometry 复选框选中。(2)设置求解类型 在菜单栏中点击HFSSSolution TypeDriven ModelOK.(3)设置模型单位 在菜单栏中点击ModelerUnitsmm.(4)建立滤波器模型 建立介质基片1) 在菜单栏中点击DrawBox或者在工具栏中点击按钮。2) 在软件操作界面右下角输入长方体起点坐标及X、Y、Z三个方向尺寸。输入坐标时,可以用Tab键来切换。3) 在属性(Property)窗口中选择Attribute标签,将该长方体命名为Substrate,透明度改为0.85.4) 点击Material后面的按钮,在材料设置窗口中点击Add Material按钮,添加介电常量为10.8的介质,命名为sub. 创建Ring_11) 在菜单栏中点击DrawRectangle.2) 同创建介质基片方法一样,输入坐标起点及尺寸,并将矩形修改名字为Ring_1.3) 同理创建矩形Inner、Cut_1.4) 在菜单栏中点击EditSelectBy Name,利用Ctrl键选择Ring_1、Inner和Cut_1.5) 在菜单栏中点击ModelerBooleanSubtract,在Subtract窗口中设置:Clone tool objects before subtract复选框不选,点击OK结束。 移动Ring_11) 在菜单栏中点击EditSelectBy Name,选中Ring_12) 在菜单栏中点击EditArrangeMove,在坐标栏输入移动的向量。 创建Ring_21) 在菜单栏中点击EditSelectBy Name,选中Ring_12) 在菜单栏中点击EditDuplicateMirror,在坐标栏输入镜像向量。3) 在操作历史树中双击新建的矩形,在属性窗口中重命名为Ring_2 创建Ring_31) 同创建矩形Ring_1方法,创建矩形Ring_3、Cut_2、Inner_22) 在菜单栏中点击EditSelectBy Name,利用Ctrl键选择Ring_3、Inner_2和Cut_2.3) 在菜单栏中点击ModelerBooleanSubtract,在Subtract窗口中设置:Clone tool objects before subtract复选框不选,点击OK结束。 同移动矩形Ring_1方法,移动矩形Ring_3. 创建Feedline_11) 创建矩形F_1、F_22) 在菜单栏中点击EditSelectBy Name,利用Ctrl键选择F_1、F_2.3) 在菜单栏中点击ModelerBooleanUnite, 完成矩形F_1、F_2的组合并在新组合的模型F_1上双击,在属性窗口中重命名为Feedline_1. 同创建Ring_2方法,通过镜像Feedline_1得到Feedline_2 组合Ring_1、Ring_2、Ring_3、Feedline_1、Feedline_2并命名为Trace.(5)创建端口 创建port_11) 在菜单栏中点击ModelerGrid PlaneXZ2) 创建一个矩形并命名为port_13) 在菜单栏中点击HFSSExcitationsAssignLumped Port, 在Lumped Port窗口的General标签中,将端口命名p1,点击Next.4) 在Modes标签中的Integration Line中点击None,选择New Line,在坐标拦中输入起点和尺寸,点击Next结束。 通过port_1镜像创建port_2(6)创建Air1) 在菜单栏中点击DrawBox或者在工具栏中点击按钮。2) 在坐标栏输入起点和坐标尺寸,并将长方体命名为Air.(7)设置边界条件 设置理想金属边界条件1) 在菜单栏中点击EditSelectBy Name,选中Trace.2) 在菜单栏中点击HFSSBoundariesAssignPerfect E,在弹出的对话框中将其命名为Perf_Trace,点击OK结束。3) 在菜单栏中点击EditSelectFaces,设置为选择表面。然后点击By Name,选择Substrate并选择其下表面。4) 在菜单栏中点击HFSSBoundariesAssignPerfect E,在弹出的对话框中将其命名为Perf_Gound,点击OK结束。 设置辐射边界条件1) 在菜单栏中点击EditSelectObject,然后点击By Name,选择Air.2) 在菜单栏中点击HFSSBoundariesAssignRadiation,在弹出的对话框中点击OK结束。(8)为该问题设置求解频率及扫描范围 设置求解频率1) 在菜单栏中点击HFSSAnalysis SetupAdd Solution Setup.2) 在求解窗口中设置:点击OK结束。 设置扫频1) 在菜单栏中点击HFSSAnalysis SetupAdd Setup.2) 选择Setup1,点击OK结束。3) 在扫频窗口中设置:4) 将Save Field复选框选中点击OK结束。(9)保存工程并命名为hfss_3couple,设计结果如下图:图一、滤波器完整模型 点击菜单栏的图标,检查设计步骤是否出错。如下图即为仿真设计正确。图二、软件检错界面图 在菜单栏中点击HFSSAnalyze All,完成仿真设计计算,出现如下图状态:图三、滤波器运算界面图(10)后处理操作 点击菜单栏HFSSResultCreate Modal Solution Data ReportRectangle Plot. 在Trace窗口中设置:点击Y标签,选择Category: S parameter; Quantity: S(P1 P1)、S(P2 P1);Function: dB,点击New Report按钮完成,仿真结果如下:图四、滤波器的S参数曲线以上为反射系数与传输系数曲线,观察结果图可发现,中心频率在910MHz,带宽为:890930MHz,最大的S21出现在893.6 MHz,值为-19.577dB,在842 MHz的带外频点处,带外抑制大于20dB,可见设计结果是满足指标要求的。五、实验心得:本实验是HFSS设计仿真的第一个实验,刚上手软件,使用技巧、实验原理都不太清晰。故需按照实验书的操作步骤一步步来,仔细输入各种参数各种设置。且由于实验书的一些印刷错误或书籍与软件版本不统一的问题,一些设置出现与目标设计不符合的结果,故实验中还需要一定的英文基础,明白英文的意思然后仔细对比每一步操作后的设计结果,找到正确的下一步操作方法。这个实验我做了很久,完成所有操作后,运行结果出不来,请教老师后才发现少了HFSSAnalyze All这一步操作。这一步是书上没有给出的,所以只能一直卡在这并且反复的重新操作了很多遍,不过也因此更加熟练了操作步骤,以及更加深入的掌握了交叉耦合滤波器的工作原理及所能达到的效果,对于仿真设计中,矩形、端口边界条件等的设计注意事项及技巧也更加熟练,为后续的实验打下基础。实验二 源-负载耦合的交叉耦合滤波器设计与仿真一、设计指标要求:中心频率:3.3GHz相对带宽:0.02MHz带内回波损耗:20dB阻带最小衰减:25dB此滤波器通过微带结构实现,选用材料为氧化铝陶瓷的介质板,其相对介电常数为r=9.8,厚度为h =0.5mm。该设计与仿真采用两腔谐振器,最终获得反射系数和参数系数曲线的仿真结果。二、实验设备:PC机、HFSS仿真软件。三、设计原理:交叉耦合滤波器在非相邻谐振腔之间引入交叉耦合,以得到有限频率交叉零点,提高滤波器的选择特性。一般来讲,一个N腔交叉耦合滤波器最多只能实现N-2个传输零点。对于给定的一种含有N个谐振器的滤波器,如果在源与负载之间也引入耦合,则可以实现N个传输零点。HFSS仿真实现对滤波器贴片和馈电的建模,然后介绍端口和边界的设置,最后生成了反射系数和传输系数曲线的仿真结果。采用两腔耦合谐振器,并引入源与负载之间的耦合,其耦合矩阵为:四、设计仿真步骤:(1)建立新的工程为了方便建立模型,在ToolOptionsHFSS Options中将Duplicate boundaries with geometry 复选框选中。(2)设置求解类型 在菜单栏中点击HFSSSolution TypeDriven ModelOK.(3)设置模型单位 在菜单栏中点击ModelerUnitsmm.(4)建立滤波器模型 建立介质基片1) 在菜单栏中点击DrawBox或者在工具栏中点击按钮。2) 在软件操作界面右下角输入长方体起点坐标及X、Y、Z三个方向尺寸。输入坐标时,可以用Tab键来切换。3) 在属性窗口中选择Attribute标签,将该长方体命名为Substrate,透明度改为0.85.4)点击Material后面的按钮,将材料设置为Al2_O3_ceramic,点击Color后面的Edit按钮,将颜色设置为绿色,点击OK结束。 创建Ring_11)在菜单栏中点击DrawRegular Polygon.2)同创建介质基片方法一样,输入坐标起点及尺寸,然后在弹出的Segment Number窗口中将多边形边数改为6,并将矩形修改名字为Ring_1.3)同理创建正多边形Inner.4)在菜单栏中点击EditSelectBy Name,利用Ctrl键选择Ring_1、Inner.5)在菜单栏中点击ModelerBooleanSubtract,在Subtract窗口中设置:Clone tool objects before subtract复选框不选,点击OK结束。 移动Ring_11) 在菜单栏中点击EditSelectBy Name,选中Ring_12) 在菜单栏中点击EditArrangeMove,在坐标栏输入移动的向量。3) 同实验一方法创建矩形Cut_1,然后同时选中Ring_1、Cut_1,在菜单栏中点击ModelerBooleanSubtract,在Subtract窗口中设置:Clone tool objects before subtract复选框不选,点击OK结束。 通过Ring_1镜像创建Ring_2 创建Feedline_11) 在菜单栏中点击DrawLine.2) 在右下角的坐标栏中输入11段线段坐标并在属性(Property)窗口中选择Attribute标签,将该名字修改为Feedline_1.3) 通过Feedline_1镜像创建Feedline_2 组合Ring_1、Ring_2、Feedline_1、Feedline_2并重命名为Trace.(5)创建端口 创建port_11) 在菜单栏中点击ModelerGrid PlaneXZ2) 创建一个矩形并命名为port_1 3) 在菜单栏中点击HFSSExcitationsAssignLumped Port, 在Lumped Port窗口的General标签中,将端口命名p1,点击Next.4) 在Modes标签中的Integration Line中点击None,选择New Line,在坐标拦中输入起点和尺寸,点击Next按钮直到结束。 通过port_1镜像创建port_2(6)创建Air1)在菜单栏中点击DrawBox或者在工具栏中点击按钮。2)在坐标栏输入起点和坐标尺寸,并将长方体命名为Air.(7)设置边界条件 设置理想金属边界条件1) 在菜单栏中点击EditSelectBy Name,选中Trace.2) 在菜单栏中点击HFSSBoundariesAssignPerfect E,在弹出的对话框中将其命名为Perf_Trace,点击OK结束。3) 在菜单栏中点击EditSelectFaces,设置为选择表面。然后点击By Name,选择Substrate并选择其下表面。4) 在菜单栏中点击HFSSBoundariesAssignPerfect E,在弹出的对话框中将其命名为Perf_Gound,点击OK结束。 设置辐射边界条件1) 在菜单栏中点击EditSelectObject,然后点击By Name,选择Air.2) 在菜单栏中点击HFSSBoundariesAssignRadiation,在弹出的对话框中点击OK结束。(8)为该问题设置求解频率及扫描范围 设置求解频率1) 在菜单栏中点击HFSSAnalysis SetupAdd Solution Setup.2) 在求解窗口中设置:点击OK结束。 设置扫频1) 在菜单栏中点击HFSSAnalysis SetupAdd Setup.2) 选择Setup1,点击OK结束。3) 在扫频窗口中设置:4) 将Save Field复选框选中点击OK结束。(9)保存工程并命名为hfss_2couple,设计结果如下图:图一、滤波器完整模型 点击菜单栏的图标,检查设计步骤是否出错。如下图即为仿真设计正确。图二、软件检错界面图 在菜单栏中点击HFSSAnalyze All,完成仿真设计计算,出现如下图状态:图三、滤波器运算界面图(10)后处理操作 点击菜单栏HFSSResultCreate Modal Solution Data ReportRectangle Plot. 在Trace窗口中设置:点击Y标签,选择Category: S parameter; Quantity: S(P1 P1)、S(P2 P1);Function: dB,点击New Report按钮完成,仿真结果如下: 图四、滤波器的S参数曲线以上为反射系数与传输系数曲线,观察结果图可发现,中心频率在3.3GHz,相对带宽为:3.2673.333GHz,最大的S21出现在3.3182GHz,值为-14.6106dB。在带外,阻带最小衰减大于25dB,可见设计结果是满足指标要求的。五、实验心得:本实验是HFSS设计仿真的第二个实验,在实验一的基础上已经相对熟悉了一些软件操作,故实验进行较为顺利。值得注意的一个地方是:在设置边界条件平面时,选择Substrate的下底面,这一操作需要鼠标一边点击Faces,一边观察仿真区域紫色面的变化以选中其底面。得出实验结果后,参考实验书的理论知识讲解分析实验结果的正确性,再次加深对耦合交叉滤波器性能特点的理解以及运用于源负载之间达到实现多两个传输零点的目的原理。并且通过实验也更加熟练掌握了各设计部分的操作技巧,为后续更复杂的仿真设计做好准备。实验三 微波波导魔T元件的设计与仿真一、设计指标要求:工作频率为4GHz此魔T元件设计仿真中采用波导结构实现,最终获得S参数曲线和场分布图的仿真结果。二、实验设备:PC机、HFSS仿真软件。三、设计原理:在魔T中,当TE10模微波信号从p1端口输入时,不能在端口p3内激发电磁场,即端口p3隔离,信号由p2和p4反相等分输出(E面T特征);当信号从端口p3输入时,不能在端口p1内激发电磁场,即端口p1隔离,信号由p2和p4同相等分输出(H面T特征)。本实验介绍如何在HFSS中利用沿轴复制的技巧实现对魔T的4个波导臂建模,同时介绍波端口积分线的设置,最后生成了S参数曲线和场分布图的仿真结果。四、设计仿真步骤:(1)建立新的工程为了方便建立模型,在ToolOptionsHFSS Options中将Duplicate boundaries with geometry 复选框选中。(2)设置求解类型 在菜单栏中点击HFSSSolution TypeDriven ModelOK.(3)设置模型单位 在菜单栏中点击ModelerUnitsmm.(4)设置模型的默认材料 在工具栏中设置模型的默认材料为真空(vacuum)(5)创建魔T 创建arm_11) 在菜单栏中点击DrawBox或者在工具栏中点击按钮。2) 在软件操作界面右下角输入长方体起点坐标及X、Y、Z三个方向尺寸。输入坐标时,可以用Tab键来切换。3) 在属性(Property)窗口中选择Attribute标签,将该长方体命名为arm_1.4) 通过Ctrl + D操作实现3D模型合适大小的显示。 设置激励端口1) 在菜单栏中点击EditSelectFaces,选择arm_1的上表面,选择面的方法同前两个实验一致。2) 在菜单栏中点击HFSSExcitationAssignWave PortGeneral,在此窗口中将端口命名为p1,并在宽边中点设置积分线,方法为:先定位好中点坐标,然后输入与底边一致的尺寸长度即可。然后点击Next直到Finish结束。 创建arm_2(借助arm_1的旋转操作完成)1) 在3D模型窗口中鼠标左键选中arm_1或Ctrl + A.2) 在菜单栏中点击EditDuplicateAround Axis.设置:点击Next结束。 创建arm_3、arm_4(借助arm_2的旋转操作完成)1) 在菜单栏中点击EditSelect By Name,选中arm_2,点击OK结束。2) 在菜单栏中点击EditDuplicateAround Axis.设置:点击Next结束。3) 利用Ctrl + D将模型显示调整至合适大小。 Ctrl + A选中所有设计部分并Unite组合,完成创建魔T 的全部操作过程。(6)为该问题设置求解频率及扫描范围 设置求解频率1)在菜单栏中点击HFSSAnalysis SetupAdd Solution Setup.2)在求解窗口中设置:点击OK结束。 设置扫频1)在菜单栏中点击HFSSAnalysis SetupAdd Setup.2)选择Setup1,点击OK结束。3)在扫频窗口中设置:4)将Save Field复选框选中点击OK结束。(7)保存工程并命名为hfss_magic T,设计结果如下图:图一、魔T完整模型 点击菜单栏的图标,检查设计步骤是否出错。如下图即为仿真设计正确。图二、软件检错界面图 在菜单栏中点击HFSSAnalyze All,完成仿真设计计算,出现如下图状态:图三、魔T运算界面图(8)后处理操作 S参数。1) 点击菜单栏HFSSResultCreate Modal Solution Data ReportRectangle Plot.2) 在Trace窗口中设置:点击Y标签,选择Category: S parameter; Quantity: S(P1 P1)、S(P2 P1)、S(P3 P1)、S(P4 P1);Function: dB,点击New Report按钮完成。 S参数相位1) 点击菜单栏HFSSResultCreate Modal Solution Data ReportRectangle Plot.2)在Trace窗口中设置:点击Y标签,选择Category: S parameter; Quantity: S(P2 P1)、S(P4 P1);Function: cang_deg点击New Report按钮完成。S参数曲线、S参数相位结果图如下: 图四、魔T的S参数曲线 图五、魔T的S参数相位曲线以上为魔T微波混合接头的S参数幅值、相位曲线结果,观察可发现S(P2 P1) 和S(P4 P1)曲线基本重合(故图中仅可直观看到3条曲线),这是满足等分要求的,因为端口2、4反相等分输出。在中心频率4GHz时,端口1的自反射S11约为-10.4611dB,从端口1到端口2和从端口1到端口4的传输量(S21 S41)为-3.4224 dB,接近理想值-3 dB。而端口1到端口3的传输量S31为-54.138dB,得到充分的隔离。而此时S(P2 P1) ,S(P4 P1)在4GHz时的相角分别是:-277.9960,97.9892,基本相差180即反相,从幅度和相位都满足E面T的特性。 场分布图1) 选中需要描绘场分布的物体,即在3D模型窗口选中整个魔T结构。2) 在菜单栏中点击HFSSFieldsPlot FieldsEMag_E.3) 在创建场图窗口中选择: 点击OK按钮完成。4) 修改场点的显示特性,在菜单栏中点击HFSSFieldsModify Plot AttributesE Field,点击OK完成。在E-Field窗口点击color map标签,选择:SpectrumRainbow.点击Apply按钮,然后Close按钮完成设置,实现魔T 中场分布的彩虹光谱呈现。实验结果如下图:图六、魔T的场分布 场分布的动态显示1) 在菜单栏中点击ViewAnimate.2) 在Swept Variable标签中接受默认设置,点击Close按钮结束,即可观察到场分布动态图。可见,当端口1被激励,端口3几乎没有电磁波的分布,即被隔离,达到实验设计效果。(动态图详见仿真文件,Word中无法给出。)五、实验心得:本实验是HFSS设计仿真的第三个实验,在前两个仿真实验基础上新学习到了波端口积分线设置的操作。这一步骤实验书中是没有给出的,需要自己观察前后仿真结果然后推算出积分线的坐标和尺寸。积分线的设置问题在后续几个实验中也有出现,故此处也是为后续实验打好基础。实验书中出现的另一个问题是,在得到魔T场分布图时,彩虹光谱设置这一步骤错误,需要自己在仿真时弄懂英文意思及操作含义,完成正确步骤。通过仿真设计过程及观察场分布、动态图结果,直观的看到了魔T中电磁波的分布与传播情况,以及4个波导臂中,会有一个被隔离,几乎没有场分布的现象。观察分析S参数幅度、相位图也可发现,端口2、4可实现等输出,同相或反相的传输效果。总之,通过本次实验使我更加深入的了解了魔T的工作及性能特性,受益略多。实验四 微波环形电桥元件的设计与仿真一、设计指标要求:工作频率为4GHz环形电桥元件设计仿真中采用微带结构实现,选用介电常数为r=2.33的介质板,厚度为h =2.286mm,最终获得S参数曲线的仿真结果。二、实验设备:PC机、HFSS仿真软件。三、设计原理:在微带环形电桥中,当信号从端口p2输入时,由于p2端口到达p1端口和到达p3端口的长度相同因此信号平分并等幅同相自p1端口和p3端口输出,而沿p2- p1- p4,p2- p3- p4两条路径的距离相差g/2,p2端口输入的信号传到p4端口形成大小相等、相位相反的两路,从而在p4端口互相抵消而无输出,p2端口和p4端口可看作是隔离的。同理,若信号从p3端口输入,信号从p2端口和p4端口等幅同相输出而p1口无输出,p3与p1隔离;若信号从p4端口输入,信号从p1端口和p3端口等幅反相输出;若信号从p1端口输入,信号从p4端口和p2端口等幅反相输出。本实验介绍如何在HFSS中实现对电桥环形贴片和馈电的建模,然后介绍端口和边界的设置,最后生成了S参数曲线的仿真结果。四、设计仿真步骤:(1)建立新的工程为了方便建立模型,在ToolOptionsHFSS Options中将Duplicate boundaries with geometry 复选框选中。(2)设置求解类型 在菜单栏中点击HFSSSolution TypeDriven ModelOK.(3)设置模型单位 在菜单栏中点击ModelerUnitsmm.(4)设置模型的默认材料 在工具栏中设置模型材料的下拉菜单中点击Select,在设置材料窗口中点击Add Material按钮,设置自定义材料,如下图所示:(5)建立环形电桥模型 建立介质基片1)在菜单栏中点击DrawRegular Poyhedron.2)在坐标输入栏输入坐标起点及尺寸,然后在弹出的Segment Number窗口中将多边形边数改为6,并将棱柱修改名字为Substrate. 建立Trace1)在菜单栏中点击DrawRectangle.2)在坐标输入栏输入坐标起点及尺寸并将矩形修改名字为Trace. 为Trace设置理想金属边界条件1)在菜单栏中点击EditSelectBy Name,选中Trace.2)在菜单栏中点击HFSSBoundariesAssignPerfect E,在弹出的对话框中将其命名为Perf_Trace,点击OK结束。 为Trace设置激励端口1)在菜单栏中点击ModelerGrid PlaneXZ,将工作平面更改为XOZ.2)在菜单栏中点击ViewModeler AttributesOrientation.3)在观察窗口中选择观察视角Right,点击Apply,然后点击Close结束。4)创建矩形端口面,点击DrawRectangle.5)运用捕捉功能,在3D窗口中移动鼠标,点击左下角点作为起点,鼠标移动至右上角点作为终点并单击,完成矩形的设置,将其命名为Port.6)在菜单栏中点击HFSSExcitationsAssignWave Port t, 在Wave Port窗口的General标签中,将端口命名p1.7)对于p1设置积分线,在Intergration Line的设置项中点击None所在的下拉菜单,选择New Line,然后在坐标栏输入积分线起点和尺寸,点击Next按钮直到结束。 创建其他Trace和波端口1)在菜单栏中点击EditSelectBy Name,选中Trace、Port.2)在菜单栏中点击EditDuplicateAround Axis.设置: 点击OK结束。 创建Ring1)在菜单栏中点击ModelerGrid PlaneXY,将工作平面更改为XOY.2)在菜单栏中点击DrawCircle并输入圆心坐标和半径,命名为Outer.3)在菜单栏中点击EditSelectBy Name,选中Trace、Trace_1、Trace_2、Port、Outer,然后进行Unite组合。4)创建圆Inner.5)在菜单栏中点击EditSelectBy Name,选中Outer、Inner进行减法处理,设置如下:Clone tool objects before subtract复选框不选,点击OK结束。(6)求解设置为该问题设置求解频率及扫描范围 设置求解频率1)在菜单栏中点击HFSSAnalysis SetupAdd Solution Setup.2)在求解窗口中设置: 点击OK结束。 设置扫频1)在菜单栏中点击HFSSAnalysis SetupAdd Setup.2)选择Setup1,点击OK结束。3)在扫频窗口中设置: 4)将Save Field复选框选中点击OK结束。(7)保存工程并命名为hfss_ring,设计结果如下图:图一、微带环形电桥完整模型 点击菜单栏的图标,检查设计步骤是否出错。如下图即为仿真设计正确。图二、软件检错界面图 在菜单栏中点击HFSSAnalyze All,完成仿真设计计算,出现如下图状态:图三、微带环形电桥运算界面图(8)后处理操作 S参数。1)点击菜单栏HFSSResultCreate Modal Solution Data ReportRectangle Plot.2)在Trace窗口中设置:点击Y标签,选择Category: S parameter; Quantity: S(P1 P1)、S(P2 P1)、S(P3 P1)、S(P4 P1);Function: dB,点击New Report按钮完成。 S参数相位2) 点击菜单栏HFSSResultCreate Modal Solution Data ReportRectangle Plot.2)在Trace窗口中设置:点击Y标签,选择Category: S parameter; Quantity: S(P2 P1)、S(P4 P1);Function: cang_deg点击New Report按钮完成。S参数曲线、S参数相位结果图如下:图四、微带环形电桥的S参数曲线图五、微带环形电桥的S参数相位曲线以上为微带环形电桥混合接头的S参数幅值、相位曲线结果,观察实验结果图可发现,环形电桥的工作频率大约在4GHz左右,且从端口1到端口2和从端口1到端口4的传输量(S21 S41)(S(P1 P1)、S(P4 P1)的交点)纵坐标值约为-3dB,满足性能要求。而此时S(P2 P1) ,S(P4 P1)在工作频率(约4GHz处)处的相角差也约为180左右,即反相传输。故从幅值和相位两方面都可认为实验结果符合微带环形电桥的性能指标。五、实验心得:本实验是HFSS设计仿真的第四个实验,原理类似实验三的魔T微波混合接头,都有隔离、等幅、同相或反相传输信号的作用。本实验运用到了同实验三中的积分线设置技巧和沿轴旋转复制的操作技巧,快捷方便的完成仿真设计,节省设计工作量。新加入介绍了创建矩形的新方法,即将3D工作区域转换至合适的平面(如XOZ),然后通过鼠标捕捉功能,确定起始点,平移鼠标完成矩形的创建。但是不足的是实验最终出来的结果与书本略有偏差,反复仿真了七八遍了还是得到一样的结果,与同学讨论后也是一样的无法改善,故最终就接受实际仿真出来的结果,分析结果可发现,S参数的幅值和相位曲线虽与课本有偏差,但其实也是满足工作频率在4GHz左右、激励不同端口,达到不同端口隔离及等幅同、反相传输信号的性能指标。故可认为,实验结果具有一定的准确性。实验五 对称振子天线的设计与仿真一、设计指标要求:中心频率为0.55GHz采用同轴线馈电,并考虑平衡馈电的巴伦结构,设计一个近似理想导体平面的UHF 对称振子天线,最后得到反射系数和二维辐射远场仿真结果。二、实验设备:PC机、HFSS仿真软件。三、设计原理:本实验利用HFSS软件设计一个靠近理想导电平面的UHF对称阵子天线,此天线中心频率为0.55GHz,采用同轴馈电,并考虑了平衡馈电的巴伦结构。实验首先介绍HFSS中实现对对称振子双臂和馈电机构的建模,然后介绍端口和边界的介绍,最后生成了反射系数和二维辐射远场的仿真结果。四、设计仿真步骤:(1)建立新的工程为了方便建立模型,在ToolOptionsHFSS Options中将Duplicate boundaries with geometry 复选框选中。(2)设置求解类型 在菜单栏中点击HFSSSolution TypeDriven ModelOK.(3)设置模型单位 在菜单栏中点击ModelerUnitsin.(4)设置模型的默认材料 在工具栏中设置模型的下拉菜单中点击Select,在设置材料窗口中选择copper,点击“确定”完成。(5)创建对称振子模型 创建ring_11)在菜单栏中点击DrawCylinder.2)在坐标输入栏输入圆柱的圆心位置、半径、高,并将其修改命名为ring_inner.3)同理创建圆柱ring_14)在菜单栏中点击EditSelect By Name,选中ring_1、ring_inner并做减法处理,设置如下:Clone tool objects before subtract复选框不选,点击OK结束。 创建ring_21)在3D窗口中选中整个ring_12)在菜单栏中点击EditCopy、EditPaste,即完成ring_1的复制,然后将其命名为ring_2.3)在历史操作树中展开ring_2、ring_inner1,鼠标左键双击Create Cylinder,将半径修改为实验所需尺寸,此为快速创建一种模型部件的新方法。 创建Arm_11)在菜单栏中点击DrawBox或者在工具栏中点击按钮。2)在坐标输入栏输入长方体起点及尺寸并命名为Arm_1. 利用Ctrl + A及Unite操作,将已建立的模型组合起来。 同创建圆柱ring_1操作创建Center pin、Grounging pin并分别命名为center_pin、pin. 同创建Arm_1操作创建Arm_2. 利用Ctrl + A及Unite操作,将已建立的模型组合起来。(6)创建波端口 创建端口圆面模型1)创建Circle,并命名为p1. 设置波端口1)在菜单栏中点击HFSSExcitationsAssignWave Port t, 在Wave Port窗口的General标签中,将端口命名p1.2)在Modes标签中设置积分线,在Intergration Line的设置项中点击None,选择New Line,在坐标栏输入积分线起点和尺寸,点击Next按钮直到结束。(7)创建辐射边界 设置默认材料vacuum. 创建Air1)在菜单栏中点击DrawBox或者在工具栏中点击按钮。2)在坐标输入栏输入长方体起点及尺寸并命名为Air. 设置辐射边界1)在菜单栏中点击EditSelect By NameAir.2)在菜单栏中点击HFSSBoundariesAssignRadiation,在弹出的对话框中将辐射边界命名为Rad_1,点击OK结束。(8)创建底板1)在菜单栏中点击EditSelectFacesAir并选中其下表面。2)在菜单栏中点击HFSSBoundariesAssignFinite Conductivity.3)在有限导体边界窗口中设置:l 名字修改为:gnd_planel 选中Use Material.l 在材料库中选择copper.l 选中Infinite Ground Plane.(9)辐射场角度设置1) 在菜单栏中点击HFSSRadiationInsert Far Field SetupInfinite Sphere,在辐射远场对话框中设置:l 名字修改为:ff_2d.(10)求解设置为该问题设置求解频率及扫频范围 设置求解频率1)在菜单栏中点击HFSSAnalysis SetupAdd Solution Setup.2)在求解窗口中设置: 点击OK结束。 设置扫频1)在菜单栏中点击HFSSAnalysis SetupAdd Setup.2)选择Setup1,点击OK结束。3)在扫频窗口中设置: 4)将Save Field复选框选中点击OK结束。(11)保存工程并命名为hfss_dipole,设计结果如下图:图一、对称振子天线完整模型 点击菜单栏的图标,检查设计步骤是否出错,其中边界条件和激励源的警告信息可忽略不考虑,如下图即为仿真设计正确。图二、软件检错界面图 在菜单栏中点击HFSSAnalyze All,完成仿真设计计算,出现如下图状态:图三、对称振子天线运算界面图(12)后处理操作 S参数1)点击菜单栏HFSSResultCreate Modal Solution Data ReportRectangle Plot. 在Trace窗口中设置:点击Y标签,选择Category: S parameter; Quantity: S(P1 P1); Function: dB,点击New Report按钮完成,仿真结果如下:图四、对称振子的反射系数曲线分析反射系数曲线可知,天线工作的中心频率在550MHz,反射系数S11约为-16.03dB,也即驻波比约为1.36,满足一般天线的性能需要。 2D辐射远场1)点击菜单栏HFSSResultCreate Far Fields ReportRadiation Pattern.2)在Context窗口中进行如下设置:在Trace窗口中将Ang列选定为变量Phi,在下拉菜单中选择Theta.3)设定:Category: Gain; Quantity : Gain Total;Function:dB,点击New Report按钮完成,仿真结果如下: 图五、对称振子的远场增益方向图分析增益方向图可知,由于理想导电平面的存在,在水平角=0、90时,天线二维辐射图都被抬高了。最大辐射方向出现在俯仰角=0处(即正Z方向),其增益约为8.1462dB.这也是符合对称振子天线性能的正确实验结果。五、实验心得:本实验是HFSS设计仿真的第五个实验,也是关于微波天线仿真设计的实验。在前四个实验的设计技巧基础上新介绍了快捷创建模型部件的方法:Copy和Paste操作,然后在属性中修改设计所需的参数值,以此节省仿真工作量且减小出错率。我在实验中遇上的问题是:开始时候设置模型单位出错,设置为mm(毫米),故一直无法得到正确的实验结果,反复检查后才纠正为in(英尺)。这也说明HFSS设计仿真实验需要很细心的一步步操作。通过观察S参数曲线可得到天线工作中心频率及驻波比指标,结果是合理的;通过观察天线远场增益方向图可知在正Z方向辐射增益最大,这一实验结果与微波理论课程知识也是一致的,故可认为仿真设计的对称振子天线是正确的。通过实验设计过程及分析思考实验结果,我加深了对于对称振子天线性能特点的理解,回顾了微波课程中的对称振子相关知识,也为后续的双模圆锥喇叭设计实验打好基础。实验六 双模圆锥喇叭天线的设计与仿真一、设计指标要求:中心频率为:5GHz采用圆波导喇叭馈电结构,并使用两个初始误差为90的激励模式构成圆极化。最后得到驻波比、二维辐射远场和圆极化轴比的仿真结果。二、实验设备:PC机、HFSS仿真软件。三、设计原理:主模喇叭E面和H面方向图之所以不对称,是由于口径电场在H面内变化大(理想导电壁上电场切向分量必须等于零),在E面内变化小(圆锥喇叭)或几乎不变(矩形喇叭)。引入适当的高次模,使口径场在两个面内的分布规律近似相等,从而使两个主平面方向图近似相等。一般仅需要一个附加模,称为双模喇叭。在双模圆锥喇叭中,附加的高次模是。波导半径必须使模传播,截止,即。截面跳边激励。和模在口径中心处电场强度纸币称为模比。随着的增加,模比增加,半径应选得使模传播,截止,即。等直径段用于保证对于设计频率,双模在口径中心同相,其长度取决于喇叭张角,阶梯到口径的距离,以及模相对于模的起始相位。在口径中心两模电场相加,靠近口径边缘两模电场对消。模的远场有分量和分量,模的远场仅有分量,若口径尺寸适当,反射系数近似等于零,远场分量为:式中,和分别为模和模的波长,为模比。由于两个模的色散特性不同,相位条件仅在单频满足,因此阶梯双模圆锥喇叭是窄带的。对于不太长的喇叭,若采用介质加载其电性能可得到某些改善。四、设计仿真步骤:(1)建立新的工程(2)设置求解类型 一般默认的求解类型就可以,即同前五个实验一致。(3)设置模型单位 在设置单位窗口选择:in(inch)。(4)设置模型的默认材料
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年快时尚行业商业模式创新与转型升级报告
- 2025年科技与互联网行业区块链在供应链金融中的应用与挑战报告
- 2025年绿色金融债券市场发行与投资风险控制策略报告
- 人事办公考试题及答案
- 资源维护激励机制设计-洞察及研究
- 活动策划合同补充协议
- 民间借贷续签合同范本
- 物流仓储退件合同范本
- 车辆质押合同借款协议
- 物料设备租借合同范本
- TSG-T7001-2023电梯监督检验和定期检验规则宣贯解读
- 包装设计市场调研
- 横河涡街流量计DY说明书
- 隧道消防维护维修及专项工程技术文件
- 阿甘正传全部台词中英对照
- 火电厂工作原理课件
- 重金属在土壤 植物体系中的迁移及其机制课件
- 抢救车管理制度 课件
- 跌倒坠床不良事件鱼骨图分析
- 供应商分级管理制度管理办法
- 招议标管理办法
评论
0/150
提交评论