




已阅读5页,还剩32页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3.2抛物线的简单几何性质课标解读1掌握抛物线的范围、对称性、顶点、离心率等几何性质(重点)2会用抛物线的简单性质解决与抛物线相关的问题(难点)3会用方程、数形结合思想解决直线与抛物线的位置关系、弦长及焦点弦、中点弦等问题(重点,难点),抛物线的几何性质(完成下表),教材知识梳理,x0,yR,x0,yR,xR,y0,xR,y0,x轴,y轴,O(0,0),e1,向右,向左,向上,向下,知识点抛物线的几何性质探究1:观察下列图形,探究以下问题:,核心要点探究,(1)观察焦点在x轴的抛物线与双曲线及椭圆的图形,分析其几何图形存在哪些区别?提示抛物线与另两种曲线相比较,有明显的不同,椭圆是封闭曲线,有四个顶点,有两个焦点,有中心;双曲线虽然不是封闭曲线,但是有两支,有两个顶点,两个焦点,有中心;抛物线只有一条曲线,一个顶点,一个焦点,无中心,(2)根据图形及抛物线方程y22px(p0)如何确定横坐标x的范围?,探究2:观察下面表格,探究以下问题:,(1)抛物线是中心对称图形吗?它有渐近线吗?提示抛物线不是中心对称图形,也没有渐近线(2)观察表中抛物线图像上点与焦点和准线的距离的联系,结合抛物线离心率的概念探究抛物线离心率的大小提示抛物线上的点到焦点的距离和它到准线的距离之比,叫作抛物线的离心率,通过抛物线的定义及图形特点易得抛物线的离心率为1.,(3)观察图形,分析抛物线的顶点坐标,以及对称性分别是什么?提示所有抛物线的标准形式都有顶点(0,0)焦点在x轴上时抛物线图像关于x轴对称,焦点在y轴上时抛物线图像关于y轴对称,已知A,B是抛物线y22px(p0)上不同的两点,O为坐标原点,若|OA|OB|,且AOB的垂心恰是此抛物线的焦点F,求直线AB的方程【自主解答】如图所示设A(x0,y0),由题意可知,B(x0,y0),,题型一抛物线方程及其几何性质,例1,规律总结根据抛物线的几何性质求抛物线的方程,一般利用待定系数法,先“定形”,再“定量”但要注意充分运用抛物线定义,并结合图形,必要时还要进行分类讨论,1(1)抛物线y24x的焦点为F,准线为l,点A是抛物线上一点,且AFO120(O为坐标原点),AKl,垂足为K,则AKF的面积是_(2)已知正三角形AOB的一个顶点O位于坐标原点,另外两个顶点A,B在抛物线y22px(p0)上,求这个三角形的边长,变式训练,过点(3,2)的直线与抛物线y24x只有一个公共点,求此直线方程,题型二直线与抛物线的位置关系,例2,规律总结直线与抛物线位置关系的判断方法设直线l:ykxb,抛物线:y22px(p0),将直线方程与抛物线方程联立消元得:k2x2(2kb2p)xb20.(1)若k20,此时直线与抛物线有一个交点,该直线平行于抛物线的对称轴或与对称轴重合(2)若k20,当0时,直线与抛物线相交,有两个交点;当0时,直线与抛物线相切,有一个交点;当0时,直线与抛物线相离,无公共点,2已知直线l:yk(x1)与抛物线C:y24x.问:k为何值时,直线l与抛物线C有两个交点,一个交点,无交点?,变式训练,若直线与抛物线有一个交点,则k20或k20时,0.解得k0或k1.所以当k0或k1时,直线l和抛物线C有一个交点若直线与抛物线无交点,则k20且1或k1或k1时,直线l和抛物线C无交点,(1)已知抛物线C的顶点为坐标原点,焦点在x轴上,直线yx与抛物线C交于A,B两点若P(2,2)为AB的中点,则抛物线C的方程为_(2)已知A,B为抛物线E上不同的两点,若抛物线E的焦点为(1,0),线段AB恰被M(2,1)所平分求抛物线E的方程;求直线AB的方程,题型三与抛物线有关的中点弦问题,例3,【答案】(1)y24x(2)见解析,规律总结中点弦问题解题策略两法,3已知抛物线y26x,过点P(4,1)引一条弦P1P2使它恰好被点P平分,求这条弦所在的直线方程及|P1P2|.,变式训练,专题四抛物线中的定值、定点问题,例4,规律总结在直线和抛物线的综合题中,经常遇到求定值,过定点的问题,解决这类问题的方法有很多,例如斜率法、方程法、向量法、参数法等解决这类问题的关键是代换和转化有时利用数形结合思想可以达到避繁就简、化难为易、事半功倍的效果,4如图,过抛物线y2x上一点A(4,2)作倾斜角互补的两条直线AB,AC交抛物线于B,C两点,求证:直线BC的斜率是定值,变式训练,(12分)已知抛物线x24y,点P是抛物线上的动点,点A的坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年妇幼保健科妇幼保健常见疾病治疗方案设计测试卷答案及解析
- 2025年睡眠医学专家睡眠障碍综合治疗方案考试答案及解析
- 2025年眩晕病学耳部前庭功能评估操作考核答案及解析
- 2025年肾脏病学常见并发症诊治模拟考卷答案及解析
- 2025年眼科医生患者问诊技巧考核模拟试卷答案及解析
- 2025年河北省唐山市芦台经济开发区选聘事业编制医疗技术人员2名模拟试卷及参考答案详解
- 2025年眼科疾病常见病例分析与治疗模拟试卷答案及解析
- 学考乐协议书
- 土地一级开发协议书
- 2025年度湖北省招募选派三支一扶高校毕业生2000人模拟试卷及答案详解(名校卷)
- 蓝牙耳机委托加工协议书
- 北京车牌出租协议书
- 忠诚协议书和婚内财产协议
- 2025-2030汽车贷款行业市场深度分析及发展策略研究报告
- 反诈知识进校园主题团课
- SCR脱硝催化剂体积及反应器尺寸计算表
- 煤巷掘进工作面瓦斯超限管控措施培训课件
- 投标代理人委托书
- 2025届高三英语一轮复习人教版(2019)必修第二册单词默写纸
- 2025年中国石油集团招聘笔试参考题库含答案解析
- 入股养殖公司合同范例
评论
0/150
提交评论