广东省廉江市2018届高考数学一轮复习 数学归纳法复习课件 理 新人教A版.ppt_第1页
广东省廉江市2018届高考数学一轮复习 数学归纳法复习课件 理 新人教A版.ppt_第2页
广东省廉江市2018届高考数学一轮复习 数学归纳法复习课件 理 新人教A版.ppt_第3页
广东省廉江市2018届高考数学一轮复习 数学归纳法复习课件 理 新人教A版.ppt_第4页
广东省廉江市2018届高考数学一轮复习 数学归纳法复习课件 理 新人教A版.ppt_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数学归纳法复习,本节目录,教材回顾夯实双基,考点探究讲练互动,名师讲坛精彩呈现,知能演练轻松闯关,基础梳理数学归纳法证明一个与正整数n有关的命题,可按以下步骤:(1)(归纳奠基)证明当n取_(n0N)时命题成立;(2)(归纳递推)假设nk(kn0,kN)时命题成立,证明当_时命题也成立只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立,第一个值n0,nk1,思考探究第一个值n0是否一定为1呢?提示:不一定,要看题目中对n的要求,如当n3时,第一个值n0应该为3.,课前热身1用数学归纳法证明12(2n1)(n1)(2n1)时,在验证n1成立时,左边所得的代数式是()A1B13C123D1234答案:C,解析:选C.等式右边的分母是从1开始的连续的自然数,且最大分母为6n1,则当n1时,最大分母为5,故选C.,解析:因为假设nk(k2为偶数),故下一个偶数为k2.答案:k2,答案:2k,【题后感悟】(1)用数学归纳法证明等式问题是常见题型,其关键点在于弄清等式两边的构成规律,等式两边各有多少项,初始值n0是几;(2)由nk到nk1时,除等式两边变化的项外还要充分利用nk时的式子,即充分利用假设,正确写出归纳证明的步骤,从而使问题得以证明,【方法提炼】用数学归纳法证明不等式时常常用到放缩法,即在归纳假设的基础上,通过放大或缩小技巧变换出要证明的目标不等式事实上,在合理运用归纳假设后,可以使用证明不等式的任何方法证明目标式成立,考点3归纳猜想证明(2013南京模拟)已知数列an满足Snan2n1.(1)写出a1,a2,a3,并推测an的表达式;(2)用数学归纳法证明所得的结论,【方法提炼】“归纳猜想证明的模式”,是不完全归纳法与数学归纳法综合运用的解题模式,这种方法在解决探索性、存在性问题时起着重要作用,它的证题模式是先由归纳推理发现结论,然后用数学归纳法证明结论的正确性,这种思维方式是推动数学研究与发展的重要方式,1在数学归纳法中,归纳奠基和归纳递推缺一不可在较复杂的式子中,注意由nk到nk1时,式子中项数的变化,应仔细分析,观察通项同时还应注意,不用假设的证法不是数学归纳法2对于证明等式问题,在证nk1等式也成立时,应及时把结论和推导过程对比,以减少计算时的复杂程度;对于整除性问题,关键是凑假设;证明不等式时,一般要运用放缩法;证明几何命题时,关键在于弄清由nk到nk1的图形变化,3归纳猜想证明属于探索性问题的一种,一般经过计算、观察、归纳,然后猜想出结论,再用数学归纳法证明.由于“猜想”是“证明”的前提和“对象”,务必保证猜想的正确性,同时必须注意数学归纳法步骤的书写,规范解答归纳猜想证明的规范解答,1,2,4,3,【方法提炼】(1)利用数学归纳法可以探索与正整数n有关的未知问题、存在性问题,其基本模式是“归纳猜想证明”,即先由合情推理发现结论,然后经逻辑推理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论