




已阅读5页,还剩44页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3课时不等式与线性规划,热点考向一不等式的性质及应用考向剖析:本考向考题的形式为选择题或填空题,主要考查利用不等式的性质、基本不等式及一元二次不等式、简单指数、对数、分式不等式的求解,常考查与集合的运算、充要条件、不等式的成立问题.,2019年仍将以小题的形式考查一元二次不等式及基本不等式.,1.(2018深圳二模)设p:x2-x-200,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件,【解析】选A.x2-x-200,解得x5或x2,故的解为:x2.,2.使log2(-x)0,解得x-1,则满足条件的x(-1,0).如图所示:,3.已知函数实数a,b满足不等式f(2a+b)+f(4-3b)0,则下列不等式恒成立的是()A.b-a2C.b-a2D.a+2b0f(2a+b)-f(4-3b)f(2a+b)f(3b-4)2a+b2.,4.已知定义域为R的函数f(x)在区间(2,+)上单调递减,且y=f(x+2)为偶函数,则关于x的不等式f(2x-1)-f(x+1)0的解集为(),【解析】选D.因为y=f(x+2)为偶函数,所以y=f(x)的图象关于直线x=2对称.因为f(x)在(2,+)上单调递减,所以f(x)在(-,2)上单调递增,又因为f(2x-1)-f(x+1)0,所以f(2x-1)f(x+1).,当x2时,2x-1x+1,要使f(2x-1)f(x+1)成立,则x+12矛盾,故无解;当xf(x+1)成立,则有22x-10(a0),再结合相应二次方程的根及二次函数图象确定一元二次不等式的解集.(2)含指数、对数的不等式:利用指数、对数函数的单调性将其转化为整式不等式求解.,(3)有函数背景的不等式:灵活利用函数的性质(单调性、奇偶性、对称性等)与图象求解.,热点考向二基本不等式1.已知函数若不等式f(x)+10在xR上恒成立,则实数a的取值范围为()A.(-,0)B.-2,2C.(-,2D.0,2,【解析】选C.由f(x)-1在R上恒成立,可得当x0时,2x-1-1,即2x0显然成立;又x0时,x2-ax-1,即为由当且仅当x=1时,取得最小值2,可得a2,综上可得a2.,2.已知函数若正实数a,b满足f(2a)+f(b-1)=0,则的最小值是_.世纪金榜导学号,【解析】因为所以函数为R上的奇函数,又在其定义域上是增函数,故在其定义域上是增函数,因为f(2a)+f(b-1)=0,所以2a+b-1=0,故2a+b=1.故(当且仅当等号成立).答案:,【名师点睛】利用不等式求最值的解题技巧(1)凑项:通过调整项的符号,配凑项的系数,使其积或和为定值.(2)凑系数:若无法直接运用基本不等式求解,可以通过凑系数后得到和或积为定值,从而可利用基本不等式求最值.,(3)换元:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值.即化为g(x)恒正或恒负的形式,然后运用基本不等式来求最值.,(4)单调性:应用基本不等式求最值时,若遇等号取不到的情况,则应结合函数的单调性求解.,热点考向三线性规划考向剖析:本考向考题形式为选择题或填空题,主要考查在线性约束条件下求最值的方法或根据最优解、可行域的情况求参数值(范围)问题.2019年高考本考向仍是必考考向,仍然是以小题的形式考查线性约束条件下的目标函数的最值问题.,1.若变量x,y满足:则的最大值为(),【解析】选D.作出不等式组对应的平面区域如图:(阴影部分).,设m=2x+y得y=-2x+m,平移直线y=-2x+m,由图象可知当直线y=-2x+m经过点A时,直线y=-2x+m的截距最大,此时m最大.,由解得即A(1,2),代入目标函数m=2x+y得m=21+2=4.即目标函数的最大值为,2.若变量x,y满足则的最小值为(),【解析】选A.由约束条件作出可行域如图,B(0,2),A(1,0),的几何意义为可行域内的动点与定点连线斜率倒数的2倍,因为所以的最小值为,3.已知实数x,y满足约束条件若的最小值为则正数a的值为(),【解析】选D.实数x,y满足的约束条件的可行域如图:,因为表示过点(x,y)与(-1,-1)连线的斜率,易知a0,所以可作出可行域,可知可行域的A与(-1,-1)连线的斜率最小,由解得的最小值为,即,4.(2018合肥一模)若实数x,y满足则z=x+2y的最小值为_.世纪金榜导学号,【解析】作出实数x,y满足表示的可行域如图:,将目标函数z=x+2y变形得由图可知当直线过点A时截距最小,即z最小.解方程组得x=1,y=0.所以z的最小值为1+20=1.答案:1,5.(2018石家庄一模)若x,y满足约束条件:则z=2x+y的最大值为_.世纪金榜导学号,【解析】画出x,y满足约束条件:对应的平面区域,如图所示:,由解得A(2,-1),由z=2x+y得:y=-2x+z,平移直线y=-2x,显然直线过A(2,-1)时,z最大,z的最大值是3.答案:3,【名师点睛】简单的线性规划问题的解题策略在给定约束条件的情况下,求线性目标函数的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《离婚谈判实战攻略:三策略制定离婚调解合同》
- 空调设备采购、安装与能源审计整改合同
- 离婚后子女抚养费支付方式调整补充协议范本
- 《智能电子合同签订与数据安全保密协议书》
- 暑期学校师德培训
- 负面情绪管理培训体系
- 辽宁省就业促进条例课件
- 公文处理标准培训
- 麦田少儿画课件
- 气割安全技术操作考试题及答案
- 2024-2029年中国红外热像技术在建筑物检测中的应用行业市场现状供需分析及市场深度研究发展前景及规划战略投资分析研究报告
- 第4课《用联系的观点看问题》第2框《在和谐共处中实现人生发展》-【中职专用】《哲学与人生》同步课堂课件
- 新媒体广告-课件-第三章-新媒体广告伦理与法规
- 计量安全防护
- 食品生物技术原理课件
- 关于车的英语原版书
- 马克思主义基本原理概论全部-课件
- 【上海旺旺食品集团公司固定资产管理问题及优化研究案例报告(数据图表论文)7400字】
- 沙里宁的大赫尔辛基规划
- 教学一体机施工方案
- 早期教育概论(高职学前教育专业)全套教学课件
评论
0/150
提交评论