二次函数中考(平行四边形)含答案.doc_第1页
二次函数中考(平行四边形)含答案.doc_第2页
二次函数中考(平行四边形)含答案.doc_第3页
二次函数中考(平行四边形)含答案.doc_第4页
二次函数中考(平行四边形)含答案.doc_第5页
免费预览已结束,剩余5页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数(平行四边形)1.如图,在平面直角坐标系xOy中,抛物线y=(xm)2m2+m的顶点为A,与y轴的交点为B,连结AB,ACAB,交y轴于点C,延长CA到点D,使AD=AC,连结BD作AEx轴,DEy轴(1)当m=2时,求点B的坐标;(2)求DE的长?(3)设点D的坐标为(x,y),求y关于x的函数关系式?过点D作AB的平行线,与第(3)题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?解答:解:(1)当m=2时,y=(x2)2+1,把x=0代入y=(x2)2+1,得:y=2,点B的坐标为(0,2)(2)延长EA,交y轴于点F,AD=AC,AFC=AED=90,CAF=DAE,AFCAED,AF=AE,点A(m, m2+m),点B(0,m),AF=AE=|m|,BF=m(m2+m)=m2,ABF=90BAF=DAE,AFB=DEA=90,ABFDAE,=,即:=,DE=4(3)点A的坐标为(m, m2+m),点D的坐标为(2m, m2+m+4),x=2m,y=m2+m+4,y=+4,所求函数的解析式为:y=x2+x+4,作PQDE于点Q,则DPQBAF,()当四边形ABDP为平行四边形时(如图1),点P的横坐标为3m,点P的纵坐标为:( m2+m+4)(m2)=m2+m+4,把P(3m, m2+m+4)的坐标代入y=x2+x+4得:m2+m+4=(3m)2+(3m)+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8()当四边形ABDP为平行四边形时(如图2),点P的横坐标为m,点P的纵坐标为:( m2+m+4)+(m2)=m+4,把P(m,m+4)的坐标代入y=x2+x+4得:m+4=m2+m+4,解得:m=0(此时A,B,D,P在同一直线上,舍去)或m=8,综上所述:m的值为8或8【例二】已知抛物线的顶点为A(2,1),且经过原点O,与x轴的另一交点为B。(1)求抛物线的解析式;(2)若点C在抛物线的对称轴上,点D在抛物线上,且以O、C、D、B四点为顶点的四边形为平行四边形,求D点的坐标;AABBOOxxyy图图(3)连接OA、AB,如图,在x轴下方的抛物线上是否存在点P,使得OBP与OAB相似?若存在,求出P点的坐标;若不存在,说明理由。【例三】(2013湘潭)如图,在坐标系xOy中,ABC是等腰直角三角形,BAC=90,A(1,0),B(0,2),抛物线y=x2+bx2的图象过C点(1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l当l移动到何处时,恰好将ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由解答:解:(1)如答图1所示,过点C作CDx轴于点D,则CAD+ACD=90OBA+OAB=90,OAB+CAD=90,OAB=ACD,OBA=CAD在AOB与CDA中,AOBCDA(ASA)CD=OA=1,AD=OB=2,OD=OA+AD=3,C(3,1)点C(3,1)在抛物线y=x2+bx2上,1=9+3b2,解得:b=抛物线的解析式为:y=x2x2(2)在RtAOB中,OA=1,OB=2,由勾股定理得:AB=SABC=AB2=设直线BC的解析式为y=kx+b,B(0,2),C(3,1),解得k=,b=2,y=x+2同理求得直线AC的解析式为:y=x如答图1所示,设直线l与BC、AC分别交于点E、F,则EF=(x+2)(x)=xCEF中,CE边上的高h=ODx=3x由题意得:SCEF=SABC,即:EFh=SABC,(x)(3x)=,整理得:(3x)2=3,解得x=3或x=3+(不合题意,舍去),当直线l解析式为x=3时,恰好将ABC的面积分为相等的两部分(3)存在如答图2所示,过点C作CGy轴于点G,则CG=OD=3,OG=1,BG=OBOG=1过点A作APBC,且AP=BC,连接BP,则四边形PACB为平行四边形过点P作PHx轴于点H,则易证PAHBCG,PH=BG=1,AH=CG=3,OH=AHOA=2,P(2,1)抛物线解析式为:y=x2x2,当x=2时,y=1,即点P在抛物线上存在符合条件的点P,点P的坐标为(2,1)【例四】(2013盘锦)如图,抛物线y=ax2+bx+3与x轴相交于点A(1,0)、B(3,0),与y轴相交于点C,点P为线段OB上的动点(不与O、B重合),过点P垂直于x轴的直线与抛物线及线段BC分别交于点E、F,点D在y轴正半轴上,OD=2,连接DE、OF(1)求抛物线的解析式;(2)当四边形ODEF是平行四边形时,求点P的坐标;(3)过点A的直线将(2)中的平行四边形ODEF分成面积相等的两部分,求这条直线的解析式(不必说明平分平行四边形面积的理由)解答:解:(1)点A(1,0)、B(3,0)在抛物线y=ax2+bx+3上,解得a=1,b=2,抛物线的解析式为:y=x2+2x+3(2)在抛物线解析式y=x2+2x+3中,令x=0,得y=3,C(0,3)设直线BC的解析式为y=kx+b,将B(3,0),C(0,3)坐标代入得:,解得k=1,b=3,y=x+3设E点坐标为(x,x2+2x+3),则P(x,0),F(x,x+3),EF=yEyF=x2+2x+3(x+3)=x2+3x四边形ODEF是平行四边形,EF=OD=2,x2+3x=2,即x23x+2=0,解得x=1或x=2,P点坐标为(1,0)或(2,0)(3)平行四边形是中心对称图形,其对称中心为两条对角线的交点(或对角线的中点),过对称中心的直线平分平行四边形的面积,因此过点A与ODEF对称中心的直线平分ODEF的面积当P(1,0)时,点F坐标为(1,2),又D(0,2),设对角线DF的中点为G,则G(,2)设直线AG的解析式为y=kx+b,将A(1,0),G(,2)坐标代入得:,解得k=b=,所求直线的解析式为:y=x+;当P(2,0)时,点F坐标为(2,1),又D(0,2),设对角线DF的中点为G,则G(1,)设直线AG的解析式为y=kx+b,将A(1,0),G(1,)坐标代入得:,解得k=b=,所求直线的解析式为:y=x+综上所述,所求直线的解析式为:y=x+或y=x+【例六】如图,抛物线经过三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.xyAOCB(第26题图)解析:解:(1)设抛物线的解析式为 , xyAOCB(第26题图)PNMH 根据题意,得,解得抛物线的解析式为: (3分)(2)由题意知,点A关于抛物线对称轴的对称点为点B,连接BC交抛物线的对称轴于点P,则P点 即为所求.设直线BC的解析式为,由题意,得解得 直线BC的解析式为 (6分)抛物线的对称轴是,当时,点P的坐标是. (7分)(3)存在 (8分)(i)当存在的点N在x轴的下方时,如图所示,四边形ACNM是平行四边形,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论