




已阅读5页,还剩49页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3讲圆锥曲线的综合问题,专题四解析几何,板块三专题突破核心考点,考情考向分析,1.圆锥曲线的综合问题一般以直线和圆锥曲线的位置关系为载体,以参数处理为核心,考查范围、最值问题,定点、定值问题,探索性问题.2.试题解答往往要综合应用函数与方程、数形结合、分类讨论等多种思想方法,对计算能力也有较高要求,难度较大,热点分类突破,真题押题精练,内容索引,热点分类突破,热点一范围、最值问题,圆锥曲线中的范围、最值问题,可以转化为函数的最值问题(以所求式子或参数为函数值),或者利用式子的几何意义求解,解答,(1)求椭圆C的方程;,(2)分别记PAO,PBO的面积为S1,S2,当M,N,B三点共线时,求S1S2的最大值.,解答,解设点A坐标为(x1,y1),点B坐标为(x2,y2),则M为(x1,y1),设直线l的方程为ykxb,联立椭圆方程可得(4k21)x28kbx4b240,,M,N,B三点共线,kMNkBN,,设A,B两点到直线OP的距离分别为d1,d2.,解决范围问题的常用方法(1)数形结合法:利用待求量的几何意义,确定出极端位置后,利用数形结合法求解.(2)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(3)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域.,跟踪演练1(2018绍兴市柯桥区模拟)已知抛物线C:y24x的焦点为F,直线l:ykx4(1k0,解得k0或00.设A(x1,y1),B(x2,y2),,假设存在点P(0,t)满足条件,,所以PM平分APB.所以直线PA与直线PB的倾斜角互补,所以kPAkPB0.,即x2(y1t)x1(y2t)0.(*)将y1kx11,y2kx21代入(*)式,整理得2kx1x2(1t)(x1x2)0,,整理得3kk(1t)0,即k(4t)0,因为k0,所以t4.,解决探索性问题的注意事项存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时,要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.,(1)求a,b的值,并写出椭圆C的方程;,解答,(2)设A,B分别为椭圆C的左、右顶点,在椭圆C上有异于A,B的动点P,若直线PA,PB与直线l:xm(m为常数)分别交于不同的两点M,N,则当点P运动时,以MN为直径的圆是否经过定点?,解答,设直线PA,PB的斜率分别为k1,k2,,真题押题精练,真题体验,1.(2017全国改编)已知F为抛物线C:y24x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|DE|的最小值为_.,解析,答案,16,解析因为F为y24x的焦点,所以F(1,0).由题意知,直线l1,l2的斜率均存在且不为0,设l1的斜率为k,,同理可得|DE|4(1k2).,证明,2.(2018浙江)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y24x上存在不同的两点A,B满足PA,PB的中点均在C上.(1)设AB中点为M,证明:PM垂直于y轴;,因为PA,PB的中点在抛物线上,,所以y1y22y0,所以PM垂直于y轴.,解答,押题预测,(1)求C1,C2的方程;,押题依据本题将椭圆和抛物线联合起来设置命题,体现了对直线和圆锥曲线位置关系的综合考查.关注知识交汇,突出综合应用是高考的特色.,解答,押题依据,解因为C1,C2的焦点重合,,所以a24.又a0,所以a2.,抛物线C2的方程为y24x.,(2)若过焦点F的直线l与椭圆分别交于M,Q两点,与抛物线分别交于P,N两点,是否存在斜率为k(k0)的直线l,使得2?若存在,求出k的值;若不存在,请说明理由.,解答,当lx轴时,|MQ|3,|PN|4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年陕西省法院书记员招聘考试笔试试题含答案
- 2025年山西省法院书记员招聘笔试题库附答案
- 农村蓄水池施工方案
- CN120108708B 一种中医预问诊收集管理系统 (浙江中医药大学)
- 2025年数学同步跟踪题目及答案
- 2025年材料概论大一考试试题及答案
- CN120106527B 一种天然气调压站自动选址方法、系统、设备及介质 (深圳市规划国土发展研究中心)
- 推动农业新质生产力发展
- 2025年完全平方数题目及答案
- tsps沃土课件教学课件
- 《公路桥梁施工监控技术规程》(JTGT3650-01-2022)
- 血气分析标本采集及结果判读
- 2024广西公需课高质量共建“一带一路”谱写人类命运共同体新篇章答案
- 家长会课件:小学一年级家长会
- 幕墙工程-技术标
- (2024年)医疗法律法规知识培训课件
- 航空职业技能鉴定考试-民航货运员笔试(2018-2023年)真题摘选含答案
- 中国创伤骨科病人围手术期静脉血栓栓塞症预防指南护理课件
- 大学美育(第二版) 课件 第一单元:诗意的栖居
- 拆除电机专项安全施工方案
- 肺部感染性疾病课件
评论
0/150
提交评论