




已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考数学二面角专题训练1.(06安徽卷)如图,P是边长为1的正六边形ABCDEF所在平面外一点,P在平面ABC内的射影为BF的中点O。()证明;()求面与面所成二面角的大小。解:()在正六边形ABCDEF中,为等腰三角形,P在平面ABC内的射影为O,PO平面ABF,AO为PA在平面ABF内的射影;O为BF中点,AOBF,PABF。()PO平面ABF,平面PBF平面ABC;而O为BF中点,ABCDEF是正六边形 ,A、O、D共线,且直线ADBF,则AD平面PBF;又正六边形ABCDEF的边长为1,。过O在平面POB内作OHPB于H,连AH、DH,则AHPB,DHPB,所以为所求二面角平面角。在中,OH=,=。在中,;而()以O为坐标原点,建立空间直角坐标系,P(0,0,1),A(0,,0),B(,0,0),D(0,2,0),设平面PAB的法向量为,则,得,;设平面PDB的法向量为,则,得,;2. (06北京卷)如图,在底面为平行四边表的四棱锥中,平面,且,点是的中点.()求证:;()求证:平面;()求二面角的大小.解法一:()PA平面ABCD,AB是PB在平面ABCD上得射影,又ABAC,AC平面ABCD,ACPB.()连接BD,与AC相交与O,连接EO,ABCD是平行四边形O是BD的中点又E是PD的中点,EOPB.又PB平面AEC,EO平面AEC,PB平面AEC,()取BC中点G,连接OG,则点G的坐标为,又是二面角的平面角。二面角的大小为图53. (06广东)如图5所示,、分别世、的直径,与两圆所在的平面均垂直,.是的直径,,.(I)求二面角的大小;(II)求直线与所成的角.解:()AD与两圆所在的平面均垂直,ADAB,ADAF,故BAD是二面角BADF的平面角,依题意可知,ABCD是正方形,所以BAD450.即二面角BADF的大小为450;()以O为原点,BC、AF、OE所在直线为坐标轴,建立空间直角坐标系(如图所示),则O(0,0,0),A(0,0),B(,0,0),D(0,8),E(0,0,8),F(0,0)所以,设异面直线BD与EF所成角为,则直线BD与EF所成的角为4. (06湖北卷)如图,已知正三棱柱的侧棱长和底面边长为1,是底面边上的中点,是侧棱上的点,且。()求二面角的平面角的余弦值;()求点到平面的距离。解法1:()因为M是底面BC边上的中点,所以AMBC,又AMC,所以AM面BC,从而AMM, AMNM,所以MN为二面角,AMN的平面角。又M=,MN=,连N,得N,在MN中,由余弦定理得。故所求二面角AMN的平面角的余弦值为。()过在面内作直线,为垂足。又平面,所以AMH。于是H平面AMN,故H即为到平面AMN的距离。在中,HM。故点到平面AMN的距离为1。解法2:()建立如图所示的空间直角坐标系,则(0,0,1),M(0,0),C(0,1,0), N (0,1,) , A (),所以,,。因为所以,同法可得。故为二面角AMN的平面角故所求二面角AMN的平面角的余弦值为。()设n=(x,y,z)为平面AMN的一个法向量,则由得 故可取设与n的夹角为a,则。所以到平面AMN的距离为。5. (06江苏卷)在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EBCF:FACP:PB1:2(如图1)。将AEF沿EF折起到的位置,使二面角A1EFB成直二面角,连结A1B、A1P(如图2)()求证:A1E平面BEP;()求直线A1E与平面A1BP所成角的大小;图1图2()求二面角BA1PF的大小(用反三角函数表示)考点分析:本题主要考查线面垂直、直线和平面所成的角、二面角等基础知识,以及空间线面位置关系的证明、角和距离的计算等,考查空间想象能力、逻辑推理能力和运算能力解不妨设正三角形的边长为3,则(I)在图1中,取BE的中点D,连结DF,AEEB=CFFA=12,AF=AD=2,而A=60o,ADF为正三角形。又AE=DE=1,EFAD。在图2中,A1EEF,BEEF,A1EB为二面角A1EFB的一个平面角,由题设条件知此二面角为直二面角,A1EBE。又BEEF=E,A1E面BEF,即A1E面BEP。(II)在图2中,A1E不垂直于A1B,A1E是面A1BP的斜线,又A1E面BEP,A1EBP,BP垂直于A1E在面A1BP内的射影(三垂线定理的逆定理)设A1E在面A1BP内的射影为A1Q,且A1Q交BP于Q,则EA1Q就是A1E与面A1BP所成的角,且BPA1Q。在EBP中,BE=BP=2,EBP=60o,EBP为正三角形,BE=EP。又A1E面BEP,A1B=A1P,Q为BP的中点,且EQ=,而A1E=1,在RtA1EQ中,即直线A1E与面A1BP所成角为60o。(III)在图3中,过F作FM于M,连结QM、QF。CF=CP=1,C=60o,FCP为正三角形,故PF=1,又PQ=BP=1,PF=PQA1E面BEP,EQ=EF=,A1F=A1Q,A1FPA1QP,故A1PF=A1PQ由及MP为公共边知FMPQMP,故QMP=FMP=90o,且MF=MQ,FMQ为二面角BA1PF的一个平面角。在RtA1QP中,A1Q=A1F=2,PQ=1,A1P=,MQA1P,MQ=,MF=。在FCQ中,FC=1,QC=2,C=60o,由余弦定理得QF=,在FMQ中,二面角BA1PF的的大小为。注此题还可以用向量法来解。(略)6. (06江西卷)如图,在三棱锥ABCD中,侧面ABD、ACD是全等的直角三角形,AD是公共的斜边,且AD,BDCD1,另一个侧面是正三角形(1)求证:ADBC(2)求二面角BACD的大小(3)在直线AC上是否存在一点E,使ED与面BCD成30角?若存在,确定E的位置;若不存在,说明理由。20、解法一:(1)方法一:作AH面BCD于H,连DH。ABBDHBBD,又AD,BD1ABBCAC BDDC又BDCD,则BHCD是正方形,则DHBCADBC方法二:取BC的中点O,连AO、DO则有AOBC,DOBC,BC面AODBCAD(2)作BMAC于M,作MNAC交AD于N,则BMN就是二面角BACD的平面角,因为ABACBCM是AC的中点,且MNCD,则BM,MNCD,BNAD,由余弦定理可求得cosBMNBMNarccos(3)设E是所求的点,作EFCH于F,连FD。则EFAH,EF面BCD,EDF就是ED与面BCD所成的角,则EDF30。设EFx,易得AHHC1,则CFx,FD,tanEDF解得x,则CEx1故线段AC上存在E点,且CE1时,ED与面BCD成30角。解法二:此题也可用空间向量求解,解答略7. (06江西文)如图,在长方体ABCDA1B1C1D1,中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:D1EA1D;(2)当E为AB的中点时,求点E到面ACD1的距离;(3)AE等于何值时,二面角D1ECD的大小为.解法(一)(1)证明:AE平面AA1DD1,A1DAD1,D1EA1D(2)设点E到面ACD1的距离为h,在ACD1中,AC=CD1=,AD1=,故(3)过D作DHCE于H,连D1H、DE,则D1HCE,DHD1为二面角D1ECD的平面角.设AE=x,则BE=2x解法(二):以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)(1)即DA1D1E.(2)因为E为AB的中点,则.,所以点E到平面AD1C的距离为(3)设平面D1EC的法向量,由令b=1,c=2,a=2x,依题意(不合,舍去),AE=时,二面角D1ECD的大小为.8(06全国II卷)如图,在直三棱柱中,、分别为、的中点。(I)证明:ED为异面直线与的公垂线;(II)设求二面角的大小。解法一:ABCDEA1B1C1OF()设O为AC中点,连接EO,BO,则EOC1C,又C1CB1B,所以EODB,EOBD为平行四边形,EDOB 2分ABBC,BOAC,又平面ABC平面ACC1A1,BO面ABC,故BO平面ACC1A1,ED平面ACC1A1,BDAC1,EDCC1,EDBB1,ED为异面直线AC1与BB1的公垂线6分()连接A1E,由AA1ACAB可知,A1ACC1为正方形,A1EAC1,又由ED平面ACC1A1和ED平面ADC1知平面ADC1平面A1ACC1,A1E平面ADC1作EFAD,垂足为F,连接A1F,则A1FAD,A1FE为二面角A1ADC1的平面角不妨设AA12,则AC2,ABEDOB1,EF,tanA1FE,A1FE60所以二面角A1ADC1为60 12分解法二:()如图,建立直角坐标系Oxyz,其中原点O为AC的中点设A(a,0,0),B(0,b,0),B1(0,b,2c)则C(a,0,0),C1(a,0,2c),E(0,0,c),D(0,b,c) 3分ABCDEA1B1C1Ozxy(0,b,0),(0,0,2c)0,EDBB1又(2a,0,2c),0,EDAC1, 6分所以ED是异面直线BB1与AC1的公垂线()不妨设A(1,0,0),则B(0,1,0),C(1,0,0),A1(1,0,2),(1,1,0),(1,1,0),(0,0,2),0,0,即BCAB,BCAA1,又ABAA1A,BC平面A1AD又E(0,0,1),D(0,1,1),C(1,0,1),(1,0,1),(1,0,1),(0,1,0),0,0,即ECAE,ECED,又AEEDE,EC面C1AD10分cos,即得和的夹角为60所以二面角A1ADC1为60 12分9(06山东卷)ABCA1VB1C1如图,已知平面平行于三棱锥的底面ABC,等边所在的平面与底面ABC垂直,且ACB=90,设(1)求证直线是异面直线与的公垂线;(2)求点A到平面VBC的距离;(3)求二面角的大小。解法1:()证明:平面平面,又平面平面,平面平面,平面,又,.为与的公垂线.()解法1:过A作于D, 为正三角形,D为的中点.BC平面,又,AD平面,线段AD的长即为点A到平面的距离.在正中,.点A到平面的距离为.解法2:取AC中点O连结,则平面,且=.由()知,设A到平面的距离为x,即,解得.即A到平面的距离为.则所以,到平面的距离为.(III)过点作于,连,由三重线定理知是二面角的平面角。在中,。所以,二面角的大小为arctan.解法二:取中点连,易知底面,过作直线交。取为空间直角坐标系的原点,所在直线分别为轴,轴,轴建立如图所示的空间直角坐标系。则。(I),。 又由已知。,而。又显然相交,是的公垂线。(II)设平面的一个法向量, 又 由取 得 点到平面的距离,即在平面的法向量上的投影的绝对值。,设所求距离为。则所以,A到平面VBC的距离为.(III)设平面的一个法向量 由 取 二面角为锐角,所以,二面角的大小为10(06山东卷文)如图,已知四棱锥P-ABCD的底面ABCD为等腰梯形,与相交于点,且顶点在底面上的射影恰为点,又.()求异面直接与所成角的余弦值;()求二面角的大小;解法一:平面, 又,由平面几何知识得:()过做交于于,连结,则或其补角为异面直线与所成的角,四边形是等腰梯形,又四边形是平行四边形。是的中点,且又,为直角三角形,在中,由余弦定理得故异面直线PD与所成的角的余弦值为()连结,由()及三垂线定理知,为二面角的平面角,二面角的大小为()连结,平面平面,又在中,故时,平面解法二: 平面 又,由平面几何知识得:以为原点,分别为轴建立如图所示的空间直角坐标系,则各点坐标为,(), ,。故直线与所成的角的余弦值为()设平面的一个法向量为,由于,由 得 取,又已知平面ABCD的一个法向量,又二面角为锐角,所求二面角的大小为11(06陕西卷)如图,=l , A, B,点A在直线l 上的射影为A1, 点B在l的射影为B1,已知AB=2,AA1=1, BB1=, 求: () 直线AB分别与平面,所成角的大小; ()二面角A1ABB1的大小.ABA1B1l第19题图 解法一: ()如图, 连接A1B,AB1, , =l ,AA1l, BB1l, AA1, BB1. 则BAB1,ABA1分别是AB与和所成的角.RtBB1A中, BB1= , AB=2, sinBAB1 = = . BAB1=45.RtAA1B中, AA1=1,AB=2, sinABA1= = , ABA1= 30.故AB与平面,所成的角分别是45,30.() BB1, 平面ABB1.在平面内过A1作A1EAB1交AB1于E,则A1E平面AB1B.过E作EFAB交AB于F,连接A1F,则由三垂线定理得A1FAB, A1FE就是所求二面角的平面角.在RtABB1中,BAB1=45,AB1=B1B=. RtAA1B中,A1B= = . 由AA1A1B=A1FAB得 A1F= = ,在RtA1EF中,sinA1FE = = , 二面角A1ABB1的大小为arcsin.解法二: ()同解法一.() 如图,建立坐标系, 则A1(0,0,0),A(0,0,1),B1(0,1,0),B(,1,0).在AB上取一点F(x,y,z),则存在tR,使得=t , 即(x,y,z1)=t(,1,1), 点F的坐标为(t, t,1t).要使,须=0, 即(t, t,1t) (,1,1)=0, 2t+t(1t)=0,解得t= , 点F的坐标为(, ), =(, ). 设E为AB1的中点,则点E的坐标为(0, ). =(,).又=(,)(,1,1)= =0, , A1FE为所求二面角的平面角.又cosA1FE= = = = = ,二面角A1ABB1的大小为arccos.12(06四川卷)如图,长方体ABCD-中,E、P分别是BC、的中点,M、N分别是AE、的中点,()求证:;()求二面角的大小;()求三棱锥PDEN的体积。解法一:()证明:取的中点,连结分别为的中点面,面面面面()设为的中点为的中点面作,交于,连结,则由三垂线定理得从而为二面角的平面角。在中,从而在中,故:二面角的大小为()作,交于,由面得面在中,方法二:以为原点,所在直线分别为轴,轴,轴,建立直角坐标系,则分别是的中点()取,显然面,又面面()过作,交于,取的中点,则设,则又由,及在直线上,可得:解得即与所夹的角等于二面角的大小故:二面角的大小为()设为平面的法向量,则又即可取点到平面的距离为,13如图,在正四棱柱中,为上使的点。平面交于,交的延长线于,求:()异面直线与所成角的大小;()二面角的正切值;解法一:(1)由为异面直线所成的角。连接.因为AE和分别是平行平面与平面的交线,所以,由此可得,再由得在(2)作为二面角即二面角的平面角在,从而解法二:(1)由为异面直线所成的角。因为和分别是平行平面与平面的交线,所以,由此可得从而,于是在(2)在知为钝角,作为二面角二面角的平面角,在,从而解法三:(1)以为原点,所在直线分别为x轴,y轴和z轴建立如图所示的空间直角坐标系。于是,因为和分别是平行平面与平面的交线,所以,设由,于是故,设异面直线AD与所成的角的大小为,则,从而。(2)作为二面角二面角的平面角,设,由得,由此得又由共线得,从而,于是联立(i)和(ii)得,故由,得14(05(福建卷)如图,直二面角DABE中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF平面ACE.()求证AE平面BCE;()求二面角BACE的大小;()求点D到平面ACE的距离.解法一:() BF平面ACE,BFAE,二面角D-AB-E为直二面角,且CBAB,CB平面ABE,CBAE,AE平面BCE()连结BD交AC于G,连结FG,正方形ABCD边长为2,BGAC,BG=,BF平面ACE,由三垂线定理的逆定理得FGAC,BCF是二面角B-AC-E的平面角,由()AE平面BCE,AEEB.又AE=EB,在等腰直角三角形中,BE=.又直角三角形BCE中,EC=,BF=直角三角形BFG中,sinBGF=,二面角B-AC-E等于arcsin.,()过E作EOAB交AB于O,OE=1,二面角D-AB-E为直二面角,EO平面ABCD.设D到平面ACE的距离为h,.AE平面BCE,AEEC.h=.点D点D到平面ACE的距离为.解法二:()同解法一.()以线段AB的中点为原点O,OE所在直线为x轴,AB所在直线为y轴,过O点平行于AD的直线为z轴,建立空间直角坐标系O-xyz,如图AE平面BCE,BE面BCE,AEBE,在直角三角形AEB中,AB=2,O为AB的中点OE=1,A(0,-1,0),E(1,0,0),C(0,1,2),设平面AEC的一个法向量=(x,y,z),则即解得令x=1,得=(1,-1,1)是平面EAC的一个法向量,又平面BAC的一个法向量为=(1,0,0), cos()=二面角B-AC-E的大小为arccos.()ADz轴,AD=2,点D到平面ACE的距离d=|.15(05山东卷)如图,已知长方体直线与平面所成的角为,垂直于,为的中点.(I)求异面直线与所成的角;(II)求平面与平面所成的二面角;(III)求点到平面的距离.解法一:在长方体中,以所在的直线为轴,以所在的直线为轴,所在的直线为轴建立如图示空间直角坐标系由已知可得,又平面,从而与平面所成的角为,又,从而易得(I)因为所以=易知异面直线所成的角为(II)易知平面的一个法向量设是平面的一个法向量,由即即平面与平面所成的二面角的大小(锐角)为(III)点到平面的距离,即在平面的法向量上的投影的绝对值,距离=所以点到平面的距离为解法二:(I)连结B1D1,过F作B1D1的垂线,垂足为KBB1与两底面ABCD,A1B1C1D1都垂直HS又因此FKAEBFK为异面直线BF与AE所成的角连结BK,由FK面BDD1B1得FKBK从而BKF为Rt在RtB1KF和RtB1D1中,由得又BF=BFK=异面直线所成的角为(II)由于DA面AA1B,由A作BF的垂线AG,垂足为G,连结DG,由三垂线定理知BGDGAGD即为平面BDF与平面AA1B所成二面角的平面角。且DAG=90在平面AA1B中,延长BF与AA1交于点SF为A1B1的中点,A1FA1、F分别为SA、SB的中点,即SA=2A1A=2=ABRtBAS为等腰三角形,垂足G点实为斜边SB的中点F,即G、F重合。易得AG=AF=SB=在RtBAS中,AD=AGD=即平面BDF与平面AA1B所成二面角(锐角)的大小为。(III)由(II)知平面AFD是平面BDF与平面AA1B所成二面角的平面角所成的平面。面AFD平面BDF在RtADF中,由A作AHDF于H,则AH即为点A到平面BDF的距离由AHDF=AD得AH=所以点到平面的距离为16(04天津卷)如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,E是PC的中点,作交PB于点F。(I)证明 平面;(II)证明平面EFD;(III)求二面角的大小。方法一:(I) 证明:连结AC,AC交BD于O。连结EO。 底面ABCD是正方形,点O是AC的中点在中,EO是中位线,。而平面EDB且平面EDB,所以,平面EDB。 。3分(II)证明:底在ABCD且底面ABCD, 同样由底面ABCD,得底面ABCD是正方形,有平面PDC而平面PDC, 。6分由和推得平面PBC而平面PBC,又且,所以平面EFD 。8分(III)解:由(II)知,故是二面角的平面角由(II)知,设正方形ABCD的边长为,则在中, 。10分在中,所以,二面角的大小为方法二:如图所示建立空间直角坐标系,D为坐标原点。设(I)证明:连结AC,AC交BD于G。连结EG。依题意得底面ABCD是正方形,是此正方形的中心,故点G的坐标为且 。这表明。而平面EDB且平面EDB,平面EDB。(II)证明:依题意得。又故由已知,且所以平面EFD。(III)解:设点F的坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年学历类自考学前儿童游戏指导-成本会计参考题库含答案解析(5套试卷)
- 2025年学历类自考医学心理学-公务员制度参考题库含答案解析(5套试卷)
- 2025年学历类自考中外文学作品导读-学前心理学参考题库含答案解析(5套试卷)
- 种子品种买断合同范本
- 商业冰箱租赁合同范本
- 水洗沙销售合同范本
- 简易暖气安装合同范本
- 工程间接合同范本
- 健康产品采购合同范本
- 月子看护服务合同范本
- 危重患者血糖管理专家共识解读
- 全套消防安全管理记录本
- GB/T 45356-2025无压埋地排污、排水用聚丙烯(PP)管道系统
- 石墨产品的国际市场推广策略
- 寿险公司IT系统架构
- 科技辅导员培训课件
- 2025年福建闽投工业区开发有限公司招聘笔试参考题库含答案解析
- 建筑工程常见施工质量通病及防治措施图文
- 家庭房产分割协议书
- 北师大版《心理健康》九年级上册全套教学课件
- 《液压与气动控制》课件
评论
0/150
提交评论