2018年高中数学 第1章 立体几何初步 1.2.1 平面的基本性质课件10 苏教版必修2.ppt_第1页
2018年高中数学 第1章 立体几何初步 1.2.1 平面的基本性质课件10 苏教版必修2.ppt_第2页
2018年高中数学 第1章 立体几何初步 1.2.1 平面的基本性质课件10 苏教版必修2.ppt_第3页
2018年高中数学 第1章 立体几何初步 1.2.1 平面的基本性质课件10 苏教版必修2.ppt_第4页
2018年高中数学 第1章 立体几何初步 1.2.1 平面的基本性质课件10 苏教版必修2.ppt_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

平面的基本性质(2),学习目标:1、掌握文字语言、图形语言与符号语言三种语言之间的转化。2、了解平面的基本性质,并能运用性质解决一些简单的问题。,公理1.如果一条直线上两点在一个平面内,那么这条直线上的所有的点都在这个平面内(即直线在平面内)。,文字语言:,图形语言:,符号语言:,一、可以用来判定一条直线是否在平面内,即要判定直线在平面内,只需确定直线上两个点在平面内即可;,二、可以用来判定点在平面内,即如果直线在平面内、点在直线上,则点在平面内.,公理1的作用有:,文字语言:,图形语言:,符号语言:,公理2.如果两个平面有一个公共点,那么它们还有其它公共点,这些公共点的集合是经过这个公共点的一条直线。,一是判定两个平面相交,即如果两个平面有一个公共点,那么这两个平面相交;,二是判定点在直线上,即点若是某两个平面的公共点,那么这点就在这两个平面的交线上.,公理2的作用有二:,文字语言:,图形语言:,符号语言:,公理3.过不在同一直线上的三点,有且只有一个平面.,或记为平面ABC,公理3及其推论是确定平面的依据.,1下列叙述中,正确的是(),因为P,Q,所以PQ;因为P,Q,所以PQ;因为AB,CAB,DAB,所以CD;因为AB,AB,所以AB.,2.下列图形中不一定是平面图形的是(),A.三角形B.菱形C.梯形D.四边相等的四边形,3.给出下列三个命题:(1)三条平行线共面(2)若直线l上有一点在平面ABC外,则l在平面ABC外;(3)两两相交的三条直线共面其中所有正确命题的序号是_.,D,(2),例1:已知ABC在平面外,它的三边所在直线分别交于P,Q,R求证:P,Q,R三点共线,P,R,Q,证明:,同理可证:,要证明空间多点共线,通常证明这些点同时落在两个相交平面内,则落在它们的交线上.,例2:点A在平面BCD外,E,F,G,H分别是AB,BC,CD,DA上的点,若EH与FG交于点P,求证:P在直线BD上,变式:点A在平面BCD外,E,F分别是AB,BC的中点,G,H分别在CD,DA上,且DG:GC=2:3,DH:HA=2:3,求证:EH,FG,BD交于一点。,线共点问题的证明:一般地是先证明某两条直线相交,然后再证明这个交点在其余直线上或者证明其余直线过这个交点.,例3、求证:如果一条直线与两平行线都相交,那么这三条直线在同一平面内.,共面问题的证明:一般先由某些条件确定一个平面,然后证明其余对象也都在这个平面内;,共面问题的证明:分别用部分点、线确定两个(或多个)平面,再证这些平面是重合的.,变式已知:abc,la=A,lb=B,lc=C求证:直线a、b、c、l共面.,练习1:如图,ABCD=P,P,AC=Q,BD=R,求证:P、Q、R三点共线.,练习2.A、B、C、D为不共面的四点,E、F、G、H分别在AB、BC、CD、DA上.若EHFG=P,则点P的位置在.若EFGH=Q,则点Q的位置在,直线BD上,直线AC上,练习3、在正方体ABCDA1B1C1D1中,E、F分别是D1C1,B1C1的中点,求证:D、B、F、E四点共面,线共点问题的证明:一般地是先证明某两条直线相交,然后再证明这个交点在其余直线上或者证明其余直线过这个交点.,只要证明这些点都是某两平面的公共点即可;,一般先由某些条件确定一个平面,然后证明其余对象也都在这个平面

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论