




已阅读5页,还剩34页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2讲函数与方程、数形结合思想,数学思想解读1.函数与方程思想的实质就是用联系和变化的观点,描述两个量之间的依赖关系,刻画数量之间的本质特征,在提出数学问题时,抛开一些非数学特征,抽象出数量特征,建立明确的函数关系,并运用函数的知识和方法解决问题.有时需要根据已知量和未知量之间的制约关系,列出方程(组),进而通过解方程(组)求得未知量.函数与方程思想是相互联系、相互为用的.2.数形结合思想,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想.数形结合思想的应用包括以下两个方面:(1)“以形助数”,把某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,揭示数学问题的本质;(2)“以数定形”,把直观图形数量化,使形更加精确.,热点一函数与方程思想应用1求解不等式、函数零点的问题【例1】(1)设00,f(x)在(0,)上是增函数,且f(0)0,f(x)0,ex1x,即ea1a.又yax(0ae,从而ea1aae.,答案(1)B(2)B,探究提高1.第(1)题构造函数,转化为判定函数值的大小,利用函数的单调性与不等式的性质求解.2.函数方程思想求解方程的根或图象交点问题(1)应用方程思想把函数图象交点问题转化为方程根的问题,应用函数思想把方程根的问题转化为函数零点问题.(2)含参数的方程问题一般通过直接构造函数或分离参数化为函数解决.,(2)依题意,f(x)在(,0)上单调递减,且f(x)在R上是偶函数.f(x)在(0,)上是增函数,且f(1)f(1)1.,答案(1)C(2)A,又an是正项等差数列,故d0,(22d)2(2d)(33d),得d2或d1(舍去),数列an的通项公式an2n.,f(x)在1,)上是增函数,,要使对任意的正整数n,不等式bnk恒成立,,探究提高1.本题完美体现函数与方程思想的应用,第(2)问利用裂项相消求bn,构造函数,利用单调性求bn的最大值.2.数列的本质是定义域为正整数集或其有限子集的函数,数列的通项公式与前n项和公式即为相应的解析式,因此解决数列最值(范围)问题的方法如下:(1)由其表达式判断单调性,求出最值;(2)由表达式不易判断单调性时,借助an1an的正负判断其单调性.,【训练2】(2018东北三省四校二模)已知等差数列an的公差d1,等比数列bn的公比q2,若1是a1,b1的等比中项,设向量a(a1,a2),b(b1,b2),且ab5.(1)求数列an,bn的通项公式;(2)设cn2anlog2bn,求数列cn的前n项和Tn.,解(1)依题设,a1b11,且ab5.,数列an的公差为d1,bn的公比q2,所以ann,bn2n1(nN*).,Tn(n2)2n14(nN*).,(2)cn2anlog2bn2nlog22n1(n1)2n(nN),Tnc1c2cn22223324(n1)2n,2Tn23224325(n1)2n1,两式相减得,Tn2223242n(n1)2n1,,应用3函数与方程思想在几何问题中的应用【例3】设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线ykx(k0)与AB相交于点D,与椭圆相交于E,F两点.,如图,设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1x2,且x1,x2满足方程(14k2)x24,,(2)根据点到直线的距离公式和式知,点E,F到AB的距离分别为,探究提高几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的求法来求解,这是求面积、线段长最值(范围)问题的基本方法.,(2)由c2得a214,所以a23.,解析(1)在同一坐标系中作出三个函数yx21,yx3,y13x的图象如图:由图可知,在实数集R上,minx21,x3,13x为yx3上A点下方的射线,抛物线AB之间的部分,线段BC,与直线y13x点C下方的部分的组合图.显然,在区间0,)上,在C点时,yminx21,x3,13x取得最大值.,(2)作出f(x)的图象如图所示.,当xm时,x22mx4m(xm)24mm2.要使方程f(x)b有三个不同的根,则有4mm20.又m0,解得m3.答案(1)C(2)(3,),探究提高1.第(1)题利用函数的图象求最值,避免分段函数的讨论;第(2)题把函数的零点或方程的根转化为两函数图象的交点问题,利用几何直观求解.2.探究方程解的问题应注意两点:(1)讨论方程的解(或函数的零点)一般可构造两个函数,使问题转化为讨论两曲线的交点问题.(2)正确作出两个函数的图象是解决此类问题的关键,数形结合应以快和准为原则,不要刻意去用数形结合.,解析x1,0时,f(x)x.当x(0,1)时,1x11.在同一坐标系内作出y(x1)2,x(1,2)及ylogax的图象.若ylogax过点(2,1),得loga21,所以a2.根据题意,函数ylogax,x(1,2)的图象恒在y(x1)2,x(1,2)的上方.结合图象,a的取值范围是(1,2.,(2)因为(ac)(bc)0,所以(ac)(bc).如图所示,,答案(1)(1,2(2)C,应用3圆锥曲线中的数形结合思想【例6】已知抛物线的方程为x28y,点F是其焦点,点A(2,4),在此抛物线上求一点P,使APF的周长最小,此时点P的坐标为_.,解析因为(2)284,所以点A(2,4)在抛物线x28y的内部,如图,设抛物线的准线为l,过点P作PQl于点Q,过点A作ABl于点B,连接AQ.,则APF的周长为|PF|PA|AF|PQ|PA|AF|AQ|AF|AB|AF|,当且仅当P,B,A三点共线时,APF的周长取得最小值,即|AB|AF|.,探究提高1.对于几何图形中的动态问题,应分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 海水捕捞鲜鱼创新创业项目商业计划书
- 海水养殖紫菜创新创业项目商业计划书
- 黑龙江证券业从业考试及答案解析
- 第3讲数一数与乘法(教师版)(知识梳理典例分析举一反三巩固提升)北师大版
- 探索氢能未来:2025年产业链关键技术突破与应用分析报告
- 2025年弹性聚硅酮类行业研究报告及未来行业发展趋势预测
- 2025年车铃行业研究报告及未来行业发展趋势预测
- 2025年工业用耐火材料行业研究报告及未来行业发展趋势预测
- 2025年隔热服行业研究报告及未来行业发展趋势预测
- 2025年PPSU奶瓶行业研究报告及未来行业发展趋势预测
- 新概念第一册Lesson-65-66练习题
- 固体物理(黄昆)第一章PPT
- 十经络养生法专家讲座
- 2023年重庆大学入学考试英语一本科
- 铁路公司招聘干部试题
- GB/T 1770-2008涂膜、腻子膜打磨性测定法
- 输血申请单规范PDCA
- 第17课-我是浙江人课件
- 税务尽职调查报告(参考)
- 初中七年级上《综合实践》活动课程课件
- 全屋定制家居整装安装师傅专业安装服务技巧培训指导手册
评论
0/150
提交评论