




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Doc521资料分享网(D) 资料分享我做主!数学高考综合能力题选讲18直线与二次曲线100080 北京中国人民大学附中 梁丽平题型预测直线与圆锥曲线的位置关系,是高考考查的重中之重主要涉及弦长、弦中点、对称、参量的取值范围、求曲线方程等问题解题中要充分重视韦达定理和判别式的应用解题的主要规律可以概括为“联立方程求交点,韦达定理求弦长,根的分布找范围,曲线定义不能忘”范例选讲例1已知双曲线G的中心在原点,它的渐近线与圆相切过点作斜率为的直线,使得和交于两点,和轴交于点,并且点在线段上,又满足()求双曲线的渐近线的方程;()求双曲线的方程;()椭圆的中心在原点,它的短轴是的实轴如果中垂直于的平行弦的中点的轨迹恰好是的渐近线截在内的部分,求椭圆的方程讲解:()设双曲线的渐近线的方程为:,则由渐近线与圆相切可得:所以,双曲线的渐近线的方程为:()由()可设双曲线的方程为:把直线的方程代入双曲线方程,整理得则 () ,共线且在线段上, ,即:,整理得:将()代入上式可解得:所以,双曲线的方程为()由题可设椭圆的方程为:下面我们来求出中垂直于的平行弦中点的轨迹设弦的两个端点分别为,的中点为,则两式作差得:由于,所以,所以,垂直于的平行弦中点的轨迹为直线截在椭圆S内的部分又由题,这个轨迹恰好是的渐近线截在内的部分,所以,所以,椭圆S的方程为:点评:解决直线与圆锥曲线的问题时,把直线投影到坐标轴上(也即化线段的关系为横坐标(或纵坐标)之间的关系)是常用的简化问题的手段;有关弦中点的问题,常常用到“设而不求”的方法;判别式和韦达定理是解决直线与圆锥曲线问题的常用工具)例2设抛物线过定点,且以直线为准线()求抛物线顶点的轨迹的方程;()若直线与轨迹交于不同的两点,且线段恰被直线平分,设弦MN的垂直平分线的方程为,试求的取值范围讲解:()设抛物线的顶点为,则其焦点为由抛物线的定义可知:所以,所以,抛物线顶点的轨迹的方程为: ()因为是弦MN的垂直平分线与y轴交点的纵坐标,由MN所唯一确定所以,要求的取值范围,还应该从直线与轨迹相交入手显然,直线与坐标轴不可能平行,所以,设直线的方程为,代入椭圆方程得:由于与轨迹交于不同的两点,所以,即()又线段恰被直线平分,所以,所以,代入()可解得:下面,只需找到与的关系,即可求出的取值范围由于为弦MN的垂直平分线,故可考虑弦MN的中点在中,令,可解得:将点代入,可得:所以,从以上解题过程来看,求的取值范围,主要有两个关键步骤:一是寻求与其它参数之间的关系,二是构造一个有关参量的不等式从这两点出发,我们可以得到下面的另一种解法:解法二设弦MN的中点为,则由点为椭圆上的点,可知:两式相减得:又由于,代入上式得:BB又点在弦MN的垂直平分线上,所以,所以,由点在线段BB上(B、B为直线与椭圆的交点,如图),所以,也即:所以,点评:解决直线和圆锥曲线的位置关系问题时,对于消元后的一元二次方程,必须讨论二次项系数和判别式,有时借助图形的几何性质更为方便涉及弦中点问题,利用韦达定理或运用平方差法时(设而不求),必须以直线与圆锥曲线相交为前提,否则不宜用此法从构造不等式的角度来说,“将直线的方程与椭圆方程联立所得判别式大于0”与“弦MN的中点在椭圆内”是等价的高考真题1(1991年全国高考)双曲线的中心在坐标原点O,焦点在x轴上,过双曲线右焦点且斜率为的直线交双曲线于P、Q两点若,且,求双曲线的方程2(1994年全国高考)已知直线l过坐标原点,抛物线C顶点在原点,焦点在x轴正半轴上.若点A(-1,0)和点B(0,8)关于l的对称点都在C上,求直线l和抛物线C的方程3(1996年全国高考)已知ll,l2是过点P()的两条互相垂直的直线,且ll,l2与双曲线y2-x2=1各有两个交点,分别为A1,B1和A2,B2. (I) 求l1的斜率k1的取值范围;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 预制混凝土构件安装技术方案
- 标准厂房钢筋混凝土结构施工方案
- 边缘计算电网应用-洞察及研究
- 研学基地知识共享与创新方案
- 2026届河南省登封市外国语高级中学化学高二上期中统考试题含解析
- 2017-2018学年高一历史北师大版必修一学案第二单元近代中国的反侵略反封建斗争和民主革命学案6
- 机械基础知识培训班课件
- 司炉工安全培训知识课件
- 温州能源面试题目及答案
- 司法行政业务授课课件
- 【培训课件】商务礼仪培训
- 政府机关员工宿舍管理条例
- 难治性尿路感染中医治疗
- 消除三病母婴传播
- 银行零售业务培训
- 交叉持股合同范本
- 新课标语文整本书阅读教学课件:童年(六下)
- 幼升小语文拼音测试卷
- 承建工程合作意向书2024年标准版
- 临床护理应急演练脚本
- DL-T-1798-2018换流变压器交接及预防性试验规程
评论
0/150
提交评论