




已阅读5页,还剩23页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4.6三角恒等变换,知识梳理,考点自诊,知识梳理,考点自诊,1.判断下列结论是否正确,正确的画“”,错误的画“”.(1)y=3sinx+4cosx的最大值是7.()(2)在斜三角形ABC中,tanA+tanB+tanC=tanAtanBtanC.()(3)半角的正弦、余弦公式实质就是将倍角的余弦公式逆求而得来的.()(4)存在实数,使tan2=2tan.(),A,知识梳理,考点自诊,A,知识梳理,考点自诊,C,考点1,考点2,考点3,三角函数式的化简,-cos,考点1,考点2,考点3,思考三角函数式化简的一般思路是什么?化简的标准是怎样的?解题心得1.三角函数式化简、求值的一般思路:异名三角函数化为同名三角函数,异角化为同角,异次化为同次,切化弦,特殊值与特殊角的三角函数互化等.2.三角化简的标准:三角函数名称尽量少,次数尽量低,最好不含分母,能求值的尽量求值.3.化简、求值的主要技巧:(1)寻求角与角之间的关系,化非特殊角为特殊角;(2)正确灵活地运用公式,通过三角变换消去或约去一些非特殊角的三角函数值.,考点1,考点2,考点3,sin,1,(2)f(x)=sin(x+2)-2sincos(x+)=sin(x+)+-2sincos(x+)=sin(x+)cos+cos(x+)sin-2sincos(x+)=sin(x+)cos-cos(x+)sin=sin(x+)-=sinx.f(x)max=1.,考点1,考点2,考点3,考点1,考点2,考点3,三角函数式的求值(多考向)考向1给角求值问题,1,思考解决“给角求值”问题的一般思路是什么?,考点1,考点2,考点3,考向2给值求角问题,思考解决“给值求角”问题的一般思路是什么?,考点1,考点2,考点3,考向3给值求值问题,(1)求cos2的值;(2)求tan(-)的值.,考点1,考点2,考点3,考点1,考点2,考点3,思考解决“给值求值”问题的关键是什么?“给角求值”问题与“给值求值”问题有什么联系?,考点1,考点2,考点3,解题心得1.解决“给角求值”问题的一般思路:“给角求值”问题一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角之间总有一定的关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.,3.求解“给值求值”问题的关键在于“变角”,使其角相同或具有某种关系;“给值求角”问题实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.,考点1,考点2,考点3,B,考点1,考点2,考点3,考点1,考点2,考点3,考点1,考点2,考点3,三角变换的应用(多考向)考向1在三角函数图像、性质的应用,考点1,考点2,考点3,考点1,考点2,考点3,思考解决三角变换在三角函数图像与性质中的应用的基本思路是什么?解题心得解决三角变换在三角函数图像与性质中的应用的基本思路:通过变换把函数化为y=Asin(x+)的形式再研究其性质,解题时注意观察角、三角函数名、式子结构等特征,注意利用整体思想解决相关问题.,考点1,考点2,考点3,考点1,考点2,考点3,考向2在三角形中的应用,A,考点1,考点2,考点3,思考如何将条件中的边角关系转化为角之间的关系?解题心得有关三角变换在三角形中应用的题目,一般思路是利用正、余弦定理将边角关系转化为角之间的关系,以便于应用两角和公式及倍角公式,要注意在三角形中角的范围及“三角和为”的条件.,考点1,考点2,考点3,对点训练4(2018山东潍坊一模,5)ABC中的内角A,B,C的对边分别为a,b,c.已知bcosA=(2c-a)cosB,c=2,a=1,则ABC的面积是(),B,考点1,考点2,考点3,1.三角恒等变换主要有以下四变:(1)变角:目的是沟通题设条件与结论中所涉及的角,其方法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其方法通常有切化弦、正弦与余弦互化等.(3)变幂:通过“升幂与降幂”,把三角函数式的各项变成同次,目的是有利于应用公式.(4)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其方法通常有:常值代换、逆用或变用公式、通分与约分、分解与组合、配方与平方等.,考点1,考点2,考点3,考点1,考点2,考点3,三角变换
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师招聘之《幼儿教师招聘》考前冲刺练习试题含答案详解(培优)
- 2025年开课直播测试题及答案
- 2025年金融科技师资能力培养策略与实施方案
- 合肥科技农村商业银行上市可行性的多维度剖析与战略路径研究
- 合成孔径雷达图像舰船检测与分类方法:技术演进与应用探索
- 教师招聘之《小学教师招聘》强化训练模考卷附参考答案详解(达标题)
- 教师招聘之《幼儿教师招聘》复习提分资料及答案详解【全优】
- 教师招聘之《小学教师招聘》练习题含答案详解(预热题)
- 教师招聘之《幼儿教师招聘》能力提升B卷题库附答案详解(能力提升)
- 押题宝典教师招聘之《小学教师招聘》通关考试题库(满分必刷)附答案详解
- 公寓管家培训课件
- cnc加工刀具管理办法
- 岳麓区夜市管理办法电话
- 蒙中医药课件
- 大学生职业规划大赛《书画艺术专业》生涯发展展示
- 塑料制品企业三年专项整治方案
- 2025篮球裁判员培训
- 植入类器械培训
- 食品欺诈培训课件
- QGDW11008-2013低压计量箱技术规范
- 火电厂维护检修作业指导书1
评论
0/150
提交评论