毕业设计(论文)-数字化PWM直流调速控制系统的毕业设计.doc_第1页
毕业设计(论文)-数字化PWM直流调速控制系统的毕业设计.doc_第2页
毕业设计(论文)-数字化PWM直流调速控制系统的毕业设计.doc_第3页
毕业设计(论文)-数字化PWM直流调速控制系统的毕业设计.doc_第4页
毕业设计(论文)-数字化PWM直流调速控制系统的毕业设计.doc_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数字化PWM直流调速控制系统的设计 2012年5月41数字化PWM直流调速控制系统的设计Digital DC Speed Control System Design of PWM摘 要在国民生产中,随着现代技术的发展,电力电子技术已得到了全面的发展,其技术已应用到各个领域。在各类机电系统中,由于直流电机具有良好的启动、制动和调速性能,直流电机调速系统已广泛运用于工业、航天领域的各个方面,最常用的直流调速技术是脉宽调制(PWM)直流调速技术,具有调速精度高、响应速度快、调速范围宽和损耗低的特点。而利用计算机数字控制也成了直流调速的一种手段,数字控制系统硬件电路的标准化程度高,控制软件能够进行复杂运算,可以实现不同于一般线性调节的最优化、自适应、非线性、智能化等控制规律,此外还拥有信息存储、数据通信和故障诊断等模拟系统无法实现的功能。 本文主要研究了利用MCS-51系列单片机控制PWM信号从而实现对直流电机转速进行控制的方法。文章中采用了专门的芯片组成了PWM信号的发生系统,并且对PWM信号的原理、产生方法以及如何通过软件编程对PWM信号占空比进行调节,从而控制其输入信号波形等均作了详细的阐述。此外,本文中还采用了芯片IR2110作为直流电机正转调速功率放大电路的驱动模块,并且把它与延时电路相结合完成了在主电路中对直流电机的控制。另外,本系统中使用了测速发电机对直流电机的转速进行测量,经过滤波电路后,将测量值送到A/D转换器,并且最终作为反馈值输入到单片机进行PI运算,从而实现了对直流电机速度的控制。在软件方面文章中详细介绍了PI运算程序,初始化程序等的编写思路和具体的程序实现。 关键字:AT89C51单片机 PWM技术 直流电动机AbstractIn the national production, along with the development of modern technology, electronic technology has been a comprehensive development, the technology has been applied in various fields. In all kinds of mechanical system, due to the dc motor has a good start, brake and the performance of speed, dc motor control system has been widely used in industry, spaceflight, most commonly used dc speed control technology is a pulse width modulation (PWM) dc speed control technology, which has a high precision, fast response time, high speed range and width of the low loss characteristics and use of computer digital control has become a kind of method of dc speed control system, the hardware circuit of a high degree of standardization, control software to carry out complex operation can be realized, different from the general linear optimization and adjustment of the adaptive, nonlinear, intelligent controllaw, also have information storage, data communi- cation and fault diagnosis cannot achieve such simulation system.This paper studied the use of the MCS-51 series single-chip control of the PWM signal in order to achieve the DC motor Speed control method. Article uses a specialized chip composed of a PWM signalgeneration system, and the principle of the PWM signal, the method and softwareprogramming the PWM signal duty cycle adjust, in order to control the input signalwaveform and so detailed elaboration. In addition, this article also uses the chip IR2110 forward as a DC motor speed control power amplification circuit of the drive module, andwith the delay circuit combination of complete control of DC motor in the main circuit. In addition, the system uses the tachogenerator to measure the speed of the DC motor,after a filter circuit, the measured values to the A/D converter, and finally as a feedback value input to the MCU PI calculations, in order to achieve DC motor speed control.Software article details the PI operation program, the initialization procedure of writingideas and specific procedures. Key words: AT89C51 microcontroller PWM control Double-loop目 录摘要IAbstractII1 概述11.1 电气传动技术发展现状及展望11.2 微机控制电机的发展和现状21.3 电机微机控制系统的特点21.4 本课题在实际应用方面的意义和价值32 直流电机调速原理52.1 直流电机调速52.2 选择PWM控制系统的理由62.3 采用转速电流双闭环的理由72.4 直流电机PWM控制原理83 双闭环直流调速系统和调节器的设计93.1 转速、电流双闭环直流调速系统及其静特性93.1.1 转速、电流双闭环直流调速系统的组成93.1.2 稳态结构图和静特性103.2 双闭环直流调速系统的数学模型和动态性能分析113.2.1 双闭环直流调速系统的动态数学模型113.2.2 起动过程分析113.2.3 转速和电流两个调节器的作用134 系统总体方案设计144.1 数字控制双闭环直流调速系统原理144.2 数字控制双闭环直流调速系统硬件结构144.3 系统方案论证154.3.1 系统总方案论证与选择154.4 主要芯片选择174.4.1 单片机的选择174.4.2 8253可编程定时器/计数器芯片174.4.3 8279可编程键盘、显示接口芯片184.4.4 A/D 转换芯片ADC0809194.5 驱动电路194.5.1 芯片IR2110性能及特点194.5.2 IR2110的引脚图以及功能204.6 PWM控制H桥双极性主电路224.7 高精度数字测速电路244.7.1 光电编码盘244.7.2 M/T 法测速原理255 系统软件设计265.1 主程序265.2 键盘扫描子程序275.3 PWM信号发生程序285.4 测速子程序295.5 显示子程序30结论32致谢33参考文献34附录 程序清单351 概述1.1 电气传动技术发展现状及展望直流电气传动和交流电气传动在19世纪先后诞生。在20世纪大部分年代里,鉴于直流传动具有优越的可控性能,高性能可调速传动一般都用直流电机,而约占电气传动总容80%的不变速传动则采用交流电机。这种分工在当时已成为举世公认的格局。直到20世纪70年代,由于采用电力电子变换器的高效交流变频传动开发成功,结构简单、成本低廉、工作可靠、维护方便、效率高、转动惯量小的交流笼型电机进入了可调速领域,一直被认为是天经地义的交直流传动按调速分工的格局终于被打破了。此后,交流调速传动主要沿着三个方向发展和应用:(1) 一般性能的节能调速和工艺调速。(2) 高性能交流调速系统。(3) 特大容量、极高速的交流传动。交流调速在国内外发展十分迅速。交流传动一般采用交直交变频。变频调速就是把50Hz的交流电变成直流电,再把直流电逆变成不同频率的交流电,电动机的转速将由变换后的电源频率来控制调速的方法。国民经济要可持续发展,就必须节约能量。采用变频调速以后,节约电能的效果是非常明显的。在实际电气传动中,应用于风机、泵、压缩机的电动机大约占40%,而实际应用变频调速的只占5%左右。交流变频调速还有待于进一步推广和使用。采用变频调速以后,带来一些设计观念上的变化。长期以来,我们设计制造电动机时主要考虑启动转矩,把起动转矩大当作一个基本出发点。鉴于增加启动电阻就可增大启动转矩,异步电动机定子常采用双笼或深槽结构。在启动时,磁场对转子强切割,产生的集肤效应把转子电流排到外绕组中,外绕组电阻就很大,这样启动电阻就大,以保证足够的启动转矩。这样一来,转子和定子的尺寸加大了,因而材料多了、重量增加了。有了变频调速后,随着频率从低到高的变化,电机的启动转矩自然会变得比较大。在电机的设计制造思想上可以摆脱启动转矩的限制,按照新的工况重新考虑。既可以使电效率提高,还可以使电动机小型化。这是变频专用电机高效的一条重要思路。随着信息化、智能化技术的不断发展,电气传动技术将向网络化控制与管理的方向迈进1。1.2 微机控制电机的发展和现状微机,出现于20世纪70年代,随着大规模及超大规模集成电路制造工艺的迅速发展,微机的性能越来越高,价格越来越便宜。此外,电力电子的发展使得大功率电子器件的性能迅速提高。因此就有可能比较普遍地应用微机来控制电机,完成各种新颖的、高性能的控制策略,使电机的各种潜在能力得到充分的发挥,使电机的性能更符合使用要求,还可以制造出各种便于控制的新型电机,使电机出现新的面貌。比较简单的电机微机控制,只要用微机控制继电器或电子开关元件使电路开通或关断就可以了。在各种机床设备及生产流水线中,现在已普遍采用带微机的可编程控制器,按一定的规律控制各类电机的动作。对于复杂的电机控制,则要用微机控制电机的电压、电流、转拒、转速、转角等等,使电机按给定的指令准确工作。通过微机控制,可使电机的性能有很大的提高。传统的直流电机和交流电机各有优缺点,直流电机调速性能好,但带有机械换向器,有机械磨损及换向火花等问题;交流电机,无论是异步电机还是同步电机,结构都比直流电机简单,工作也比直流电机可靠,但在频率恒定的电网上运行时,它们的速度不能方便而经济地调节。目前,交流电机广泛应用于数控机床等自动化设备的数控位置伺服系统。为了提高性能,在先进的数控交流伺服系统中,已采用高速数字化处理芯片,其指令执行速度达到每秒数百兆以上,且具有适合于矩阵运算的指令。1.3 电机微机控制系统的特点目前,很多电机微机控制系统都是由数字部件和模拟部件组成的混合系统,而全数字控制系统是当前的发展方向。在微机控制系统中,通常是既有模拟信号,也有数字信号;既有连续信号,也有离散信号。由于计算机的CPU只能识别和处理数字信号,而且只能一次次离散地处理,所以计算机处理外界信息时总要有个采样过程,电机微机控制系统必然是一种采样控制系统。电机采用微机控制,还具有以下特点:(1) 硬件比较简单,用少量芯片就可完成很多功能,且易于通用化。(2) 可以分时操作;一台微机可以起多个控制器的作用,为多个控制回路服务;也可控制多个电机,完成较多功能。(3) 计算机具有记忆和判断功能,系统的控制方式由软件决定,若要改变控制规律,一般不必改变系统的硬件,只需按新的控制规律编出新的程序即可;且可在运行中随时根据不同的电机工作状态,选择最有利的系统参数、系统结构及控制策略等;使系统具有很强的灵活性和适应性。(4) 计算机的运算速度快,精度高。它有丰富的逻辑判断功能和大容量的存储单元,因此有可能实现复杂的控制规律,如采样参数辨识、优化控制等现代控制理论所提供的控制算法,以达到较高的控制质量。(5) 数字量的运算不会出现模拟电路中所遇到的零点漂移问题,被控量可以很大,也可以很小,都较易保证足够的控制精度。(6) 信息处理能力强,可以完成各种数据的处理,及时给操作人员提供有用的信息和指示。 正因为有上述优点,电机微机控制的理论及应用发展得非常迅速,新产品不断涌现和普及。1.4 本课题在实际应用方面的意义和价值电机调速系统采用微机实现数字化控制,是电气传动发展的主要方向之一。从80年代中后期起,世界各大电气公司都在竞相开发数字式调速传动装置,当前直流调速已发展到个很高的技术水平:功率元件采用可控硅;控制板采用表面安装技术;控制方式采用电源换相、相位控制。特别是采用了微机及其他先进技术,使数字式直流调速装置具有很高的精度、优良的控制性能和强大的抗千扰能力.在国内外得到广泛的应用。全数字化直流调速装置作为最新控制水平的传动方式更显示了强大优势。全数字化直流调速系统不断推出,为工程应用提供了优越的条件。采用微机控制后整个调速系统实现全数字化,结构简单,可靠性高,操作维护方便,电机稳态运行时转速精度可达到较高水平.直流电机具有优良的调速特性,调速平滑,方便,调速范围广;过载能力大,能承受频烦的冲击负载,可实现频繁的无级快速起动,制动和反转;能满足生产过程自动化系统各种不同的特殊运行要求。由于微机具有较佳的性能价格比,所以微机在工业过程及没备控制中得到日益广泛的应用。近年来,尽管交流调速系统发展很快,但是直流电机良好的启动、制动性能,在轧钢机、矿井卷扬机、挖掘机、海洋钻机、金属切削机床、造纸机、高层电梯等需要广泛范围内平滑调速的高性能可控电力拖动领域中得到了广泛的应用。现阶段,我国还没有自主的全数字化控制直流调速装置商用,国外先进的控制器价格昂贵,研究及更好的使用国外先进的控制器,具有重要的实际意义和重大的经济价值2。2 直流电机调速原理2.1 直流电机调速直流电动机的调速方法有三种: (1) 调节电枢供电电压U。改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内无级平滑调速的系统来说,这种方法最好。Ia变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。 (2) 改变电动机励磁磁通。改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方法。If变化时间遇到的时间常数同Ia变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。 (3) 改变电枢回路电阻R。在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。 改变电阻调速缺点很多,目前很少采用,仅在有些起重机、卷扬机及电车等调速性能要求不高或低速运转时间不长的传动系统中采用。弱磁调速范围不大,往往是和调压调速配合使用,在额定转速以上作小范围的升速。对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好。因此,自动控制的直流调速系统往往以调压调速为主。改变电枢电压调速是直流调速系统采用的主要方法,调节电枢供电电压需要有专门的可控直流电源,常用的可控直流电源有以下三种:(1) 旋转变流机组。用交流电动机和直流发电机组成机组,以获得可调的直流电压。 (2) 静止可控整流器。用静止的可控整流器,如汞弧整流器和晶闸管整流装置产生可调的直流电压。 (3) 直流斩波器或脉宽调制变换器。用恒定直流电源或不可控整流电源供电,利用直流斩波或脉宽调制的方法产生可调的直流平均电压。 由于旋转变流机组缺点太多,采用汞弧整流器和闸流管这样的静止变流装置来代替旋转变流机组,形成所谓的离子拖动系统。离子拖动系统克服旋转变流机组的许多缺点,而且缩短了响应时间,但是由于汞弧整流器造价较高,体积仍然很大,维护麻烦,尤其是水银如果泄漏,将会污染环境,严重危害身体健康。目前,采用晶闸管整流供电的直流电动机调速系统已经成为直流调速系统的主要形式。但是,晶闸管整流器也有它的缺点,主要表现在以下方面:(1) 晶闸管一般是单向导电元件,晶闸管整流器的电流是不允许反向的,这给电动机实现可逆运行造成困难。必须实现四象限可逆运行时,只好采用开关切换或正、反两组全控型整流电路,构成V-M可逆调速系统,后者所用变流设备要增多一倍。 (2) 晶闸管元件对于过电压、过电流以及过高的du/dt和di/dt十分敏感,其中任意指标超过允许值都可能在很短时间内元件损坏,因此必须有可靠的保护装置和符合要求的散热条件,而且在选择元件时还应保留足够的余量,以保证晶闸管装置的可靠运行。 (3) 晶闸管的控制原理决定了只能滞后触发,因此,晶闸管可控制整流器对交流电源来说相当于一个感性负载,吸取滞后的无功电流,因此功率因素低,特别是在深调速状态,即系统在较低速运行时,晶闸管的导通角很小,使得系统的功率因素很低,并产生较大的高次谐波电流,引起电网电压波形畸变,殃及附近的用电设备。如果采用晶闸管整流装置的调速系统在电网中所占容量比重较大,将造成所谓的“电力公害”。为此,应采取相应的无功补偿、滤波和高次谐波的抑制措施。 (4) 晶闸管整流装置的输出电压是脉动的,而且脉波数总是有限的。如果主电路电感不是非常大,则输出电流总存在连续和断续两种情况,因而机械特性也有连续和断续两段,连续段特性比较硬,基本上还是直线,断续段特性则很软,而且呈现出显著的非线性。 由于以上种种原因,所以选择了脉宽调制变换器进行改变电枢电压的直流调速系统3。 2.2 选择PWM控制系统的原因 脉宽调制器UPW采用美国硅通用公司(Silicon General)的第二代产品SG3525,这是一种性能优良,功能全、通用性强的单片集成PWM控制器。由于它简单、可靠及使用方便灵活,大大简化了脉宽调制器的设计及调试,故获得广泛使用。PWM系统在很多方面具有较大的优越性:(1) PWM调速系统主电路线路简单,需用的功率器件少。(2) 开关频率高,电流容易连续,谐波少,电机损耗及发热都较小。 (3) 低速性能好,稳速精度高,调速范围广,可达到110000左右。(4) 如果可以与快速响应的电动机配合,则系统频带宽,动态响应快,动态抗扰能力强。 (5) 功率开关器件工作在开关状态,导通损耗小,当开关频率适当时开关损耗也不大,因而装置效率较高。 (6) 直流电源采用不可控整流时,电网功率因数比相控整流器高。 2.3 采用转速电流双闭环的原因 同开环控制系统相比,闭环控制具有一系列优点。在反馈控制系统中,不管出于什么原因(外部扰动或系统内部变化),只要被控制量偏离规定值,就会产生相应的控制作用去消除偏差。因此,它具有抑制干扰的能力,对元件特性变化不敏感,并能改善系统的响应特性。由于闭环系统的这些优点因此选用闭环系统。 单闭环速度反馈调速系统,采用PI控制器时,可以保证系统稳态速度误差为零。但是如果对系统的动态性能要求较高,如果要求快速起制动,突加负载动态速降小等,单闭环系统就难以满足要求。这主要是因为在单闭环系统中不能完全按照要求来控制动态过程的电流或转矩。另外,单闭环调速系统的动态抗干扰性较差,当电网电压波动时,必须待转速发生变化后,调节作用才能产生 ,因此动态误差较大。在要求较高的调速系统中,一般有两个基本要求:一是能够快速启动制动,二是能够快速克服负载、电网等干扰。通过分析发现,如果要求快速起动,必须使直流电动机在起动过程中输出最大的恒定允许电磁转矩,即最大的恒定允许电枢电流,当电枢电流保持最大允许值时,电动机以恒加速度升速至给定转速,然后电枢电流立即降至负载电流值。如果要求快速克服电网的干扰,必须对电枢电流进行调节。 以上两点都涉及电枢电流的控制,所以自然考虑到将电枢电流也作为被控量,组成转速、电流双闭环调速系统。 2.4 直流电机PWM控制原理PWM控制技术是利用半导体开关器件的导通和关断,把直流电压变成电压脉冲列,控制电压脉冲的宽度或周期以达到变压目的,或控制电压脉冲的宽度和周期以达到变压变频目的的一种控制技术。下面简述一下PWM调速系统的工作原理。图2-1给出PWM调速系统的工作原理电路及其输出波形。a)波形图 b)原理图图2-1 PWM调速原理图设V1先导通T1秒,然后又关断T2秒,如此反复进行,可得到图2-1-a)的波形图。可以得到电机电枢端的平均电压Ua=T1/T*Ud设=T1/T,可定义为占空比。设定输入电压不变,越大,电机电枢端的平均电压Ua越大,反之也成立。故改变值就可以达到调压的目的。 改变有三种方法:第一种就是T1保持不变,使T2在0到之间变化,这叫定宽调频法;第二种就是T2不变,使T1在0到之间变化,这叫调宽调频法;第三种就是T保持一定,使T1在0到T间变化,这叫定频调宽法。本设计采用的是定宽调频法4。 3 双闭环直流调速系统和调节器的设计3.1 转速、电流双闭环直流调速系统及其静特性采用PI调节的单个转速闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。但是,如果对系统的动态性能要求较高,单闭环系统就难以满足需要,这主要是因为在单闭环系统中不能控制电流和转矩的动态过程。电流截止负反馈环节是专门用来控制电流的,并不能很理想地控制电流的动态波形。在起动过程中,始终保持电流(转矩)为允许的最大值,使电力拖动系统以最大的加速度起动,到达稳态转速时,立即让电流降下来,使转矩马上与负载相平衡,从而转入稳态运行。这样的理想起动过程波形。为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值的恒流过程。按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。应该在起动过程中只有电流负反馈,没有转速负反馈,达到稳态转速后,又希望只要转速负反馈,不再让电流负反馈发挥作用。3.1.1 转速、电流双闭环直流调速系统的组成系统中设置两个调节器,分别调节转速和电流,如图3-1所示。把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。这就形成了转速、电流双闭环调速系统。图3-1 转速、电流双闭环直流调速系统结构 转速和电流两个调节器一般都采用PI调节器,图3-2。两个调节器的输出都是带限幅作用的,转速调节器ASR的输出限幅电压决定了电流给定电压的最大值,电流调节器ACR的输出限幅电压限制了电力电子变换器的最大输出电压。图3-2 双闭环直流调速系统电路原理图 3.1.2 稳态结构图和静特性稳态结构图,如图3-3,当调节器饱和时,输出为恒值,相当于使该调节环开环。当调节器不饱和时,PI作用使输入偏差电压在稳态时总是零。在正常运行时,电流调节器是不会达到饱和状态的。因此,对于静特性来说,只有转速调节器饱和与不饱和两种情况。图3-3 双闭环直流调速系统的稳态结构框图(ASR未饱和)(1) 转速调节器不饱和稳态时,、,转速和电流反馈系数。n=Un/ =n0,静特性的CA段。,CA段静特性从理想空载状态的一直延续到,而一般都是大于额定电流的。这就是静特性的运行段,它是水平的特性。(2) 转速调节器饱和ASR输出达到限幅值U*im,转速外环呈开环状态,成电流无静差的单电流闭环调节系统。稳态时Id=U*im/=Idm, 为最大电流。静特性是图中的AB段,它是垂直的特性。这样的下垂特性只适合于的情况,因为如果,则,ASR将退出饱和状态。双闭环调速系统的静特性在负载电流小于时表现为转速无静差,转速负反馈起主要调节作用。当负载电流达到时,对应于转速调节器的饱和输出,这时,电流调节器起主要调节作用,系统表现为电流无静差,得到过电流的自动保护5。3.2 双闭环直流调速系统的数学模型和动态性能分析3.2.1 双闭环直流调速系统的动态数学模型双闭环直流调速系统的动态结构图,如图3-4所示。图中和分别表示转速调节器和电流调节器的传递函数。图3-4 双闭环直流调速系统的动态结构框图3.2.2 起动过程分析双闭环直流调速系统突加给定电压由静止状态起动时,转速和电流的动态过程示于图3-5。由于在起动过程中转速调节器ASR经历了不饱和、饱和、退饱和三种情况,整个动态过程就分成图中标明的I、II、III三个阶段。图3-5 双闭环直流调速系统起动时的转速和电流波形 第I阶段()是电流上升阶段。突加给定电压后,、都上升,在没有达到负载电流以前,电机还不能转动。当后,电机开始起动,由于机电惯性的作用,转速不会很快增长,因而转速调节器ASR的输入偏差电压的数值仍较大,其输出电压保持限幅值,强迫电流迅速上升。直到,电流调节器很快就压制了的增长,标志着这一阶段的结束。在这一阶段中,ASR很快进入并保持饱和状态,而ACR不饱和。第II阶段()是恒流升速阶段,ASR饱和,转速环相当于开环,在恒值电流给定下的电流调节系统,基本上保持电流恒定,因而系统的加速度恒定,转速呈线性增长。与此同时,电机的反电动势E也按线性增长,对电流调节系统来说,E是一个线性渐增的扰动量,为了克服它的扰动,和也必须基本上按线性增长,才能保持恒定。当ACR采用PI调节器时,要使其输出量按线性增长,其输入偏差电压必须维持一定的恒值,也就是说,应略低于。第阶段(以后)是转速调节阶段。当转速上升到给定值时,转速调节器ASR的输入偏差减小到零,输出维持在限幅值,电机仍在加速,使转速超调。转速超调后,ASR输入偏差电压变负,开始退出饱和状态,和很快下降。但是,只要仍大于负载电流,转速就继续上升。直到=时,转矩,则dn/dt=0,转速n才到达峰值(时)。此后,电动机开始在负载的阻力下减速,与此相应,在时间内,直到稳定。如果调节器参数整定得不够好,也会有一段振荡过程。在这最后的转速调节阶段内,ASR和ACR都不饱和,ASR起主导的转速调节作用,而ACR则力图使尽快地跟随其给定值6。3.2.3 转速和电流两个调节器的作用 (1) 转速调节器的作用转速调节器是调速系统的主导调节器,它使转速n很快地跟随给定电压变化,稳态时可减小转速误差,如果采用PI调节器,则可实现无静差。对负载变化起抗扰作用。其输出限幅值决定电机允许的最大电流。 (2) 电流调节器的作用作为内环的调节器,在转速外环的调节过程中,它的作用是使电流紧紧跟随其给定电压(即外环调节器的输出量)变化。对电网电压的波动起及时抗扰的作用。在转速动态过程中,保证获得电机允许的最大电流,从而加快动态过程。当电机过载甚至堵转时,限制电枢电流的最大值,起快速的自动保护作用。一旦故障消失,系统立即自动恢复正常。这个作用对系统的可靠运行来说是十分重要的。 4 系统总体方案设计 4.1 数字控制双闭环直流调速系统原理 图4-1 数字式直流双闭环PWM调速系统原理图 根据设计任务要求整个系统原理如图4-1所示,采用了转速、电流双闭环控制结构,在系统中设置两个调节器,分别调节转速和电流,二者之间实行串级连接,即以转速调节器的输出作为电流调节器的输入,再用电流调节器的输出作为PWM的控制电压。从闭环反馈结构上看,电流调节环在里面,是内环,按典型型系统设计;转速调节环在外面,成为外环,按典型型系统设计。为了获得良好的动、静态品质,调节器均采用PI调节器并对系统进行了校正。检测部分中,采用了霍尔片式电流检测装置(TA)对电流环进行检测,转速环则是采用了光电码盘进行检测,达到了比较理想的检测效果。PWM采用AT89C51单片机实现,驱动电路采用了IR2110集成芯片,具有较强的驱动能力和保护功能7。 4.2 数字控制双闭环直流调速系统硬件结构 根据系统原理我们设计了数字控制双闭环直流调速系统硬件结构,如图4-2所示,系统的特点:双闭环系统结构,采用微机控制;全数字电路,实现脉冲触发、转速给定和检测;采用数字PI算法。由软件实现转速、电流调节系统由主电路、检测电路、控制电路、给定电路、显示电路组成。 主电路:三相交流电源经不可控整流器变换为电压恒定的直流电源,再经过直流PWM变换器得到可调的直流电压,给直流电动机供电。 检测回路:包括电压、电流、温度和转速检测。电压、电流和温度检测由 A/D 转换通道变为数字量送入微机;转速检测用数字测速(光电码盘)。 故障综合:利用微机拥有强大的逻辑判断功能,对电压、电流、温度等信号进行分析比较,若发生故障立即进行故障诊断,以便及时处理,避免故障进一步扩大。这也是采用微机控制的优势所在8。 图 4-2 系统硬件结构图4.3 系统方案论证4.3.1 系统总方案论证与选择方案一:直接加直流电源来控制电机的转动速度;根据电动机在其额定电压时,电动机有一定的额定转速。根据其输入电压的减小,其转动速度也相应的减小。从而在传统的改变电动机的转速问题中,就是利用所给电动机的电压的不同,而达到人们所需要的大约速度。方案二:以单片机AT89C51为中心通过D/A转换器,将单片机数字量转换为模拟量,从而起到控制电动机的转速问题。其中在单片机控制部分通过按键直接从程序中调出所需要速度的值,同时输到数码显示部分和D/A转换部分以实现电动机的调速。键盘AT89C51单片机数码显示D/A0832转换电动机图4-3 电路组成框图方案三:采用AT89C51单片机进行控制。本设计需要使用的软件资源比较简单,只需要完成编码器采样部分、键盘控制部分以及显示输出功能。采用AT89C51进行控制比较简单、易控制、可靠性高、抗干扰能力强、精度高且体积大大减小。输出速度的调节是通过键操作,显示速度。AT89C51是一种带4K字节闪烁可编程可擦除只读存储器的低电压,高性能CMOS8位微处理器。具有4K字节可编程闪烁存储器,可擦除的的只读存储器(PEROM), ATMEL的AT89C51是一种非常高效的微控制器。 AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。三级程序存储器锁定、128*8位内部RAM、32可编程I/O线、两个16位定时器/计数器、5个中断源、可编程串行通道、低功耗的闲置和 电模式、片内振荡器和时钟电路,电路框图如图4-4所示。 图4-4 电路组成框图方案分析:方案一只能以减小所给电压值而能使电动机的转速有相应的减小,此方案操作性差且不安全。方案二不能及时的从电动机那里得到相应的转动速度,而是直接从程序哪儿调用相应的数值给数码显示。所以,此处的电路在速度的显示上失去了其真实性。方案三在可操作性与实时性方面都都结合了本专业特点,从控制理论与控制技术出发,充分发挥与应用本学科特点。所以,设计采用方案三9。4.4 主要芯片选择 4.4.1 单片机的选择 在详细的系统分析、实用性、经济性分析的基础上,选用了MCS-51系列的AT89C51 单片机,其结构框图如下图所示: 图4-5 AT89C51结构框图4.4.2 8253可编程定时器/计数器芯片 MCS51内部只有两个16位定时器/计数器,在数字测速电路中需要计数器,选用了一个可扩展 8253 芯片。其逻辑结构如下图所示。 8253内部具有3 个独立的 16 位定时/计数器,每个计数器有三根 I/O 线; CLK 为时钟输入线,为计数脉冲输入端;OUT 为计数器输出端,当计数器减为零时 OUT 输出相应信号;GATE 为门控信号,用于启动或禁止计数器操作。 控制寄存器用来寄存操作方式控制字,每个计数器都有一个单独的控制寄存器,只能写入不能读出。 8253与单片机的接口控制逻辑简单,D0-D7为双向、三态数据线,是单片机与 8253之间的数据传输线,RD、WR为数据读、写控制线,A0、A1是地址选择线,CS是片选线。在单片机应用系统中,由 CS、A0、A1 给出 16 位地址码。 图4-6 8253逻辑结构图4.4.3 8279可编程键盘、显示接口芯片 8279是一种通用的可编程键盘/显示器接口芯片。它能接收和识别来自键盘阵列的输入数据并完成预处理,还能显示数据和对数码显示器件进行自动扫描控制。是实现 CPU 与键盘、LED数码显示器之间进行信息交换的一种专用芯片。8279与MCS51单片机的接口非常简单,因而在单片机应用系统中得到了广泛的应用。 8279芯片有40条引脚,由单一5V 供电。主要由以下几个部分组成: (1) I/O 控制和数据缓冲器; (2) 控制和定时寄存器及定时控制部分; (3) 扫描计数器; (4) 回送缓冲器与键盘去抖动控制电路; (5) FIFO(先进先出)寄存器和状态电路; (6) 显示器地址寄存器和显示 RAM。图4-7 显示器/键盘驱动电路4.4.4 A/D 转换芯片ADC0809 ADC0809是8位逐次逼近性A/D转换器。带8个模拟量输入通道,有通道地址译码锁存器,输出带三态数据锁存器。启动信号为脉冲启动形式。ADC0809内部设有时钟电路,故CLK时钟需外部输入,允许范围500KHz1MHz,典型值640KHZ。每一通道的转换需 6673 个脉冲,大约 100110 s。 4.5 驱动电路该驱动电路采用了IR2110集成芯片,该集成电路具有较强的驱动能力和保护功能。4.5.1 芯片IR2110性能及特点IR2110是美国国际整流器公司利用自身独有的高压集成电路以及无闩锁CMOS技术,于1990年前后开发并且投放市场的,IR2110是一种双通道高压、高速的功率器件栅极驱动的单片式集成驱动器。它把驱动高压侧和低压侧MOSFET或IGBT所需的绝大部分功能集成在一个高性能的封装内,外接很少的分立元件就能提供极快的功耗,它的特点在于,将输入逻辑信号转换成同相低阻输出驱动信号,可以驱动同一桥臂的两路输出,驱动能力强,响应速度快,工作电压比较高,可以达到600V,其内设欠压封锁,成本低、易于调试。高压侧驱动采用外部自举电容上电,与其他驱动电路相比,它在设计上大大减少了驱动变压器和电容的数目,使得MOSFET和IGBT的驱动电路设计大为简化,而且它可以实现对MOSFET和IGBT的最优驱动,还具有快速完整的保护功能。与此同时,IR2110的研制成功并且投入应用可以极大地提高控制系统的可靠性。降低了产品成本和减少体积。4.5.2 IR2110的引脚图以及功能引脚1(LO)与引脚7(HO):对应引脚12以及引脚10的两路驱动信号输出端,使用中,分别通过一电阻接主电路中下上通道MOSFET的栅极。引脚2(COM):下通道MOSFET驱动输出参考地端,使用中,与引脚13(Vss)直接相连,同时接主电路桥臂下通道MOSFET的源极。引脚3(Vcc):直接接用户提供的输出极电源正极,并且通过一个较高品质的电容接引脚2。引脚5(Vs):上通道MOSFET驱动信号输出参考地端,使用中,与主电路中上下通道被驱动MOSFET的源极相通。与引脚6(VB):通过一阴极连接到该端阳极连接到引脚3的高反压快恢复二极管,与用户提供的输出极电源相连,对Vcc的参数要求为大于或等于0.5V,而小于或等于+20V。引脚9(VDD):芯片输入级工作电源端,使用中,接用户为该芯片工作提供的高性能电源,为抗干扰,该端应通过一高性能去耦网络接地,该端可与引脚3(Vcc)使用同一电源,也可以分开使用两个独立的电源。引脚10(HIN)与引脚12(LIN):驱动逆变桥中同桥臂上下两个功率MOS器件的驱动脉冲信号输入端。应用中,接用户脉冲形成部分的对应两路输出,对此两个信号的限制为Vss-0.5V至Vcc+0.5V,这里Vss 与Vcc分别为连接到IR2110的引脚13(Vss)与引脚9(VDD)端的电压值。引脚11(SD):保护信号输入端,当该引脚为高电平时,IR2110的输出信号全部被封锁,其对应的输出端恒为低电平,而当该端接低电平时,则IR2110的输出跟随引脚10与12而变化。引脚13(Vss):芯片工作参考地端,使用中,直接与供电电源地端相连,所有去耦电容的一端应接该端,同时与引脚2直接相连。引脚8、引脚14、引脚4:为空引脚。 图4-8 IR2110管脚图IR2110采用HVIC和闩锁抗干扰CMOS工艺制作,具有独立的高端和低端输出通道;逻辑输入与标准的CMOS输出兼容;浮置电源采用自举电路,其工作电压可达500V,du/dt=50V/ns,在15V下的静态功耗仅有1.6mW;输出的栅极驱动电压范围为1020V,逻辑电源电压范围为515V,逻辑电源地电压偏移范围为5V5V。IR2110采用CMOS施密特触发输入,两路具有滞后欠压锁定。推挽式驱动输出峰值电流2A,负载为1000pF时,开关时间典型值为25ns。两路匹配传输导通延时为120ns,关断延时为94ns。IR2110的脚10可以承受2A的反向电流10。 图4-9 IGBT驱动电路4.6 PWM控制H桥双极性主电路从上面的原理可以看出,产生高压侧门极驱动电压的前提是低压侧必须有开关的动作,在高压侧截止期间低压侧必须导通,才能够给自举电容提供充电的通路。因此在这个电路中,Q1、Q4或者Q2、Q3是不可能持续、不间断的导通的。我们可以采取双PWM信号来控制直流电机的正转以及它的速度。将IC1的HIN端与IC2的LIN端相连,而把IC1的LIN端与IC2的HIN端相连,这样就使得两片芯片所输出的信号恰好相反。在HIN为高电平期间,Q1、Q4导通,在直流电机上加正向的工作电压。其具体的操作步骤如下:当IC1的LO为低电平而HO为高电平的时候,Q2截止,C1上的电压经过VB、IC内部电路和HO端加在Q1的栅极上,从而使得Q1导通。同理,此时IC2的HO为低电平而LO为高电平,Q3截止,C3上的电压经过VB、IC内部电路和HO端加在Q4的栅极上,从而使得Q4导通。电源经Q1至电动机的正极经过整个直流电机后再通过Q4到达零电位,完成整个的回路。此时直流电机正转。在HIN为低电平期间,LIN端输入高电平,Q2、Q3导通,在直流电机上加反向工作电压。其具体的操作步骤如下:当IC1的LO为高电平而HO为低电平的时候,Q2导通且Q1截止。此时Q2的漏极近乎于零电平,Vcc通过D1向C1充电,为Q1的又一次导通作准备。同理可知,IC2的HO为高电平而LO为低电平,Q3导通且Q4截止,Q3的漏极近乎于零电平,此时Vcc通过D2向C3充电,为Q4的又一次导通作准备。电源经Q3至电动机的负极经过整个直流电机后再通过Q2到达零电位,完成整个的回路。此时,直流电机反转。因此电枢上的工作电压是双极性矩形脉冲波形,由于存在着机械惯性的缘故,电动机转向和转速是由矩形脉冲电压的平均值来决定的。设PWM波的周期为T,HIN为高电平的时间为t1,这里忽略死区时间,那么LIN为高电平的时间就为T-t1。HIN信号的占空比为D=t1/T。设电源电压为V,那么电枢电压的平均值为:Vout= t1 - ( T - t1 ) V / T = ( 2 t1 T ) V / T = ( 2D 1 )V (4-1)定义负载电压系数为,= Vout / V, 那么 = 2D 1 ;当T为常数时,改变HIN为高电平的时间t1,也就改变了占空比D,从而达到了改变Vout的目的。D在01之间变化,因此在1之间变化。如果我们联系改变,那么便可以实现电

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论