已阅读5页,还剩28页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第4节数列求和及数列的综合应用,考试要求1.熟练掌握等差、等比数列的前n项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法;3.了解数列是一种特殊的函数;4.能在具体问题情境中,发现等差、等比关系,并解决相应的问题.,知识梳理,1.特殊数列的求和公式,2.数列求和的几种常用方法(1)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n项和可用错位相减法求解.(4)倒序相加法如果一个数列an的前n项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法求解.,3.数列应用题常见模型(1)等差模型:如果后一个量比前一个量增加(或减少)的是同一个固定值,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是同一个固定的非零常数,该模型是等比模型,这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,应考虑an与an1(或者相邻三项等)之间的递推关系,或者Sn与Sn1(或者相邻三项等)之间的递推关系.,微点提醒,基础自测,1.判断下列结论正误(在括号内打“”或“”),解析(3)要分a0或a1或a0且a1讨论求解.答案(1)(2)(3)(4),答案B,4.(2018东北三省四校二模)已知数列an满足an1an2,a15,则|a1|a2|a6|()A.9B.15C.18D.30,解析由题意知an是以2为公差的等差数列,又a15,所以|a1|a2|a6|5|3|1答案C,5.(2019北京朝阳区质检)已知数列an,bn的前n项和分别为Sn,Tn,bnan2n1,且SnTn2n1n22,则2Tn_.,解析由题意知TnSnb1a1b2a2bnann2n12,又SnTn2n1n22,所以2TnTnSnSnTn2n2n(n1)4.答案2n2n(n1)4,答案an2(n1),考点一分组转化法求和,【例1】(2019济南质检)已知在等比数列an中,a11,且a1,a2,a31成等差数列.(1)求数列an的通项公式;(2)若数列bn满足bn2n1an(nN*),数列bn的前n项和为Sn,试比较Sn与n22n的大小.,解(1)设等比数列an的公比为q,a1,a2,a31成等差数列,,ana1qn12n1(nN*).,(2)由(1)知bn2n1an2n12n1,Sn(11)(32)(522)(2n12n1)135(2n1)(12222n1),Sn(n22n)10,由a11,a21d,a312d分别加上1,1,3后成等比数列,得(2d)22(42d),解得d2(舍负),所以an1(n1)22n1.,考点四数列的综合应用【例4】某同学利用暑假时间到一家商场勤工俭学.该商场向他提供了三种付酬方案:第一种,每天支付38元;第二种,第一天付4元,第二天付8元,第三天付12元,依此类推;第三种,第一天付0.4元,以后每天比前一天翻一番(即增加1倍).他应该选择哪种方式领取报酬呢?,解设该学生工作n天,每天领工资an元,共领工资Sn元,则第一种方案an(1)38,Sn(1)38n;第二种方案an(2)4n,Sn(2)4(123n)2n22n;,令Sn(1)Sn(2),即38n2n22n,解得n18,即小于或等于18天时,第一种方案比第二种方案报酬高(18天时一样高).令Sn(1)Sn(3),即38n0.4(2n1),利用计算器计算得小于或等于9天时,第一种方案报酬高,所以少于10天时,选择第一种方案.比较第二、第三种方案,S10(2)220,S10(3)409.2,S10(3)S10(2),Sn(3)Sn(2).所以等于或多于10天时,选择第三种方案.,规律方法数列的综合应用常考查以下几个方面:(1)数列在实际问题中的应用;(2)数列与不等式的综合应用;(3)数列与函数的综合应用.解答数列综合题和应用题既要有坚实的基础知识,又要有良好的逻辑思维能力和分析、解决问题的能力.解答应用性问题,应充分运用观察、归纳、猜想的手段建立出有关等差(比)数列、递推数列模型,再结合其他相关知识来解决问题.,【训练4】已知二次函数yf(x)的图象经过坐标原点,其导函数为f(x)6x2,数列an的前n项和为Sn,点(n,Sn)(nN*)均在函数yf(x)的图象上.,解(1)设二次函数f(x)ax2bx(a0),则f(x)2axb.由于f(x)6x2,得a3,b2,所以f(x)3x22x.又因为点(n,Sn)(nN*)均在函数yf(x)的图象上,所以Sn3n22n.,当n2时,anSnSn13n22n3(n1)22(n1)6n5;当n1时,a1S131221615,也适合上式,所以an6n5(nN*).,思维升华1.非等差、等比数列的一般数列求和,主要有两种思想(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.2.解答数列应用题的步骤(1)审题仔细阅读材料,认真理解题意.(2)建模将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的特征、要求的是什么.(3)求解求出该问题的数学解.(4)还原将所求结果还原到实际问题中.,易错防范1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年购买决策分析师招聘面试参考题库及答案
- 2025年新媒体经理招聘面试题库及参考答案
- 2025年幸福管理专员招聘面试题库及参考答案
- 2025年数据库管理专员招聘面试参考题库及答案
- 2025年战略投资经理招聘面试参考题库及答案
- 铁路试验工程师考试题库及答案
- 2025年市场研究分析员招聘面试参考题库及答案
- 2025年外籍人才招聘专员招聘面试参考题库及答案
- 2025年Python工程师招聘面试题库及参考答案
- 2025年图书馆管理专员招聘面试参考题库及答案
- 2025宁夏回族自治区大学生乡村医生专项计划招聘工作人员13人考试笔试模拟试题及答案解析
- 学校食堂满意度测评及管理方案
- 2025安徽清水街道招聘就业专干6人笔试考试参考试题附答案解析
- 小学语文教师素养大赛知识素养试题
- 北京市海淀区2025-2026学年高三上学期期中地理试题 含解析
- 施工现场安全事故应急预案
- 可靠性工程师培训讲义
- 教科版五年级科学《光的反射现象》
- JCT2112-2012 塑料防护排水板
- 110kV线路运维方案
- 北京第十三中学分校2023-2024学年九年级上学期期中物理试卷
评论
0/150
提交评论