




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
考点规范练63二项分布与正态分布基础巩固1.(2016湖北武昌区调考)某居民小区有两个相互独立的安全防范系统A和B,系统A和系统B在任意时刻发生故障的概率分别为和p.若在任意时刻恰有一个系统不发生故障的概率为,则p=()A.B.C.D.2.已知随机变量X服从正态分布N(2,32),且P(X1)=0.30,则P(2X3)等于()A.0.20B.0.50C.0.70D.0.803.在投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为()A.0.648B.0.432C.0.36D.0.3124.甲、乙两人独立地对同一目标各射击一次,命中率分别为0.6和0.5,现已知目标被击中,则它被甲击中的概率为()A.0.45B.0.6C.0.65D.0.755.(2016河北衡水模拟)甲、乙两名同学参加一项射击比赛游戏,其中任何一人射击一次击中目标得2分,未击中目标得0分.若甲、乙两人射击的命中率分别为和p,且甲、乙两人各射击一次得分之和为2的概率为.假设甲、乙两人射击互不影响,则p值为()A.B.C.D.6.一袋中有5个白球,3个红球,这些球除颜色外完全相同.现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X次球,则P(X=12)等于()A.B.C.D.7.甲射击命中目标的概率是,乙射击命中目标的概率是,丙射击命中目标的概率是.现在三人同时射击目标,则目标被击中的概率为()A.B.C.D.8.(2016湖南永州二模)大学生甲、乙两人独立地参加论文答辩,他们的导师根据他们的论文质量估计他们都能过关的概率为,甲过而乙没过的概率为(导师不参与自己学生的论文答辩),则导师估计乙能过关的概率为.9.(2016河北唐山一模)1 000名考生的某次成绩近似服从正态分布N(530,502),则成绩在630分以上的考生人数约为.(注:正态分布N(,2)在区间(-,+),(-2,+2),(-3,+3)内取值的概率分别为0.682 7,0.954 5,0.997 3)10.设甲、乙、丙三台机器是否需要照顾相互之间没有影响.已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125.(1)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少?(2)计算这一小时内至少有一台机器需要照顾的概率.11.某袋子中有1个白球和2个红球,这些球除颜色外完全相同.(1)每次取1个球,不放回,直到取到白球为止,求取球次数X的分布列;(2)每次取1个球,有放回,直到取到白球为止,但抽取次数不超过5次,求取球次数X的分布列;(3)每次取1个球,有放回,共取5次,求取到白球次数X的分布列.能力提升12.(2016天津河西一模)在盒子里有大小相同,仅颜色不同的球共10个,其中红球4个,白球3个,蓝球3个.现从中任取出一球确定颜色后放回盒子里,再取下一个球.重复以上操作,最多取3次,过程中如果取出蓝球则不再取球.求:(1)最多取两次就结束的概率;(2)整个过程中恰好取到2个白球的概率;(3)设取球的次数为随机变量X,求X的分布列和均值.导学号3727039513.一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X,求X的分布列;(2)玩三盘游戏,至少有一盘出现音乐的概率是多少?14.(2016山东,理19)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,若两人都猜对,则“星队”得3分;若只有一人猜对,则“星队”得1分;若两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X的分布列和均值E(X).导学号37270396高考预测15.甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X为比赛决出胜负时的总局数,求X的分布列.参考答案考点规范练63二项分布与正态分布1.B解析 由题意,得(1-p)+p=,故p=,故选B.2.A解析 因为该正态密度曲线的对称轴方程为x=2,P(X3)=P(X1)=0.30,P(1X3)=1-P(X3)-P(X1)=1-20.30=0.40,P(2X3)=P(1X3)=0.20.3.A解析 由题意知该同学通过测试,即3次投篮投中2次或投中3次就算通过测试.故所求的概率为0.62(1-0.6)+0.63=0.648.4.D解析 设目标被击中为事件B,目标被甲击中为事件A,则由P(B)=0.60.5+0.40.5+0.60.5=0.8,得P(A|B)=0.75.5.C解析 设“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B,则“甲射击一次,未击中目标”为事件,“乙射击一次,未击中目标”为事件,则P(A)=,P()=1-,P(B)=p,P()=1-p,依题意得(1-p)+p=,解得p=故选C.6.D解析 由题意知第12次取到红球,前11次中恰有9次红球2次白球,由于每次取到红球的概率为,所以P(X=12)=7.A解析 设“甲命中目标”为事件A,“乙命中目标”为事件B,“丙命中目标”为事件C,则击中目标表示事件A,B,C中至少有一个发生.又P()=P()P()P()=1-P (A)1-P(B)1-P(C)=击中的概率为1-P()=8解析 设导师估计甲、乙能过关的概率分别为p,q,则解得p=,q=故导师估计乙能过关的概率为9.23解析 由题意可知=530,=50,在区间(430,630)的概率为0.954 5,故成绩在630分以上的概率为0.023,因此成绩在630分以上的考生人数约为1 0000.023=23.10.解 记“机器甲需要照顾”为事件A,“机器乙需要照顾”为事件B,“机器丙需要照顾”为事件C.由题意,各台机器是否需要照顾相互之间没有影响,因此,A,B,C是相互独立事件.(1)由已知得P(AB)=P(A)P(B)=0.05,P(AC)=P(A)P(C)=0.1,P(BC)=P(B)P(C)=0.125.解得P(A)=0.2,P(B)=0.25,P(C)=0.5.所以甲、乙、丙每台机器需要照顾的概率分别为0.2,0.25,0.5.(2)记A的对立事件为,B的对立事件为,C的对立事件为,则P()=0.8,P()=0.75,P()=0.5,于是P(ABC)=1-P()=1-P()P()P()=0.7.所以这一小时内至少有一台机器需要照顾的概率为0.7.11.解 (1)由题意可知X的取值为1,2,3.P(X=1)=;P(X=2)=;P(X=3)=1=所以X的分布列是X123P(2)由题意可知X的取值为1,2,3,4,5.P(X=k)=,k=1,2,3,4.P(X=5)=故X的分布列为X12345P(3)因为XB,所以X的分布列为P(X=k)=,其中k=0,1,2,3,4,5.12.解 (1)设取球的次数为,则P(=1)=,P(=2)=,所以最多取两次就结束的概率为P(=1)+P(=2)=(2)由题意可知,可以如下取球方式:红白白,白红白,白白红,白白蓝,故恰好取到2个白球的概率为3+(3)随机变量X的取值为1,2,3,P(X=1)=,P(X=2)=,P(X=3)=,随机变量X的分布列为X123PX的均值E(X)=1+2+313.解 (1)X可能的取值为:10,20,100,-200.根据题意,有P(X=10)=,P(X=20)=,P(X=100)=,P(X=-200)=所以X的分布列为X1020100-200P(2)设“第i盘游戏没有出现音乐”为事件Ai(i=1,2,3),则P(A1)=P(A2)=P(A3)=P(X=-200)=所以,“三盘游戏中至少有一次出现音乐”的概率为1-P(A1A2A3)=1-=1-因此,玩三盘游戏至少有一盘出现音乐的概率是14.解 (1)记事件A为“甲第一轮猜对”,记事件B为“乙第一轮猜对”,记事件C为“甲第二轮猜对”,记事件D为“乙第二轮猜对”,记事件E为“星队至少猜对3个成语”.由题意,E=ABCD+BCD+ACD+ABD+ABC由事件的独立性与互斥性,P(E)=P(ABCD)+P(BCD)+P(ACD)+P(ABD)+P(ABC)=P(A)P(B)P(C)P(D)+P()P(B)P(C)P(D)+P(A)P()P(C)P(D)+P(A)P(B)P()P(D)+P(A)P(B)P(C)P()=+2所以“星队”至少猜对3个成语的概率为(2)由题意,随机变量X可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得P(X=0)=,P(X=1)=2,P(X=2)=,P(X=3)=,P(X=4)=2,P(X=6)=可得随机变量X的分布列为X012346P所以均值E(X)=0+1+2+3+4+615.解 用A表示“甲在4局以内(含4局)赢得比赛”,Ak表示“第k局甲获胜”,Bk表示“第k局乙获胜”,则P(Ak)=,P(Bk)=,k=1,2,3,4,5.(1)P(A)=P(A1A2)+P(B1A2A3)+P(A1B2A3A4)=P(A1)P(A2)+P(B1)P(A2)P(A3)+P(A1)P(B2)P(A3)P(A4)=(2)X的可能取值为2,3,4,5.P(X=2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年文化遗产数字化展示与传播在文化遗产数字化展示与传播产业链升级中的应用策略报告
- 驾校聘用副校长合同范本
- 理疗床产品经销合同范本
- 终止联通通信合同协议书
- 鱼塘虾池转让协议书范本
- 渣土车个人运输合同协议
- 甲方租赁合同终止协议书
- 镇政府投资项目合同范本
- 自考领取证书免责协议书
- 黑户自卸车买卖合同范本
- 体育设备采购投标方案
- 2022年莱芜技师学院工作人员招聘考试真题
- 从事工程咨询业务工作年限证明
- 《北京市住房租赁合同》示范文本(BF-2023-0603)
- 呼吸科危重症的诊断及治疗
- GB/T 11693-1994船用法兰焊接单面座板
- 提高手术室垃圾分类正确率PDCA
- GB 16806-1997消防联动控制设备通用技术条件
- 320T履带吊安装方案 9
- 清洁间歇导尿重点技术评分重点标准
- 机动车登记服务站管理规定
评论
0/150
提交评论