已阅读5页,还剩33页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
9.3圆的方程,知识梳理,双基自测,2,1,1.圆的定义及方程,一定点,定长,(a,b),r,知识梳理,双基自测,2,1,2.点与圆的位置关系圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0),(1)(x0-a)2+(y0-b)2r2点在圆上;(2)(x0-a)2+(y0-b)2r2点在圆外;(3)(x0-a)2+(y0-b)2r2点在圆内.,=,0),因为点A(4,1),B(2,1)在圆上,考点1,考点2,考点3,例2如图,已知点A(-1,0)与点B(1,0),C是圆x2+y2=1上的动点,连接BC并延长至D,使得|CD|=|BC|,求AC与OD的交点P的轨迹方程.思考求与圆有关的轨迹方程都有哪些常用方法?,考点1,考点2,考点3,解:设动点P(x,y),由题意可知P是ABD的重心.由A(-1,0),B(1,0),令动点C(x0,y0),考点1,考点2,考点3,解题心得1.求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:(1)直接法,直接根据题目提供的条件列出方程;(2)定义法,根据圆、直线等定义列方程;(3)几何法,利用圆的几何性质列方程;(4)代入法,找到要求点与已知点的关系,代入已知点满足的关系式等.2.求与圆有关的轨迹问题时,题目的设问有两种常见形式,作答也应不同.若求轨迹方程,则把方程求出化简即可;若求轨迹,则必须根据轨迹方程,指出轨迹是什么曲线.,考点1,考点2,考点3,对点训练2已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.(1)求线段AP中点的轨迹方程;(2)若PBQ=90,求线段PQ中点的轨迹方程.,考点1,考点2,考点3,解(1)设AP的中点为M(x,y),由中点坐标公式可知,P点坐标为(2x-2,2y).因为P点在圆x2+y2=4上,所以(2x-2)2+(2y)2=4,即(x-1)2+y2=1.故线段AP中点的轨迹方程为(x-1)2+y2=1.(2)设PQ的中点为N(x,y).在RtPBQ中,|PN|=|BN|.设O为坐标原点,连接ON,则ONPQ,所以|OP|2=|ON|2+|PN|2=|ON|2+|BN|2,所以x2+y2+(x-1)2+(y-1)2=4.故线段PQ中点的轨迹方程为x2+y2-x-y-1=0.,考点1,考点2,考点3,考点1,考点2,考点3,考点1,考点2,考点3,考向二截距型最值问题例4在例3的条件下求y-x的最大值和最小值.思考如何求解形如ax+by的最值问题?,考点1,考点2,考点3,考点1,考点2,考点3,考向三距离型最值问题例5在例3的条件下求x2+y2的最大值和最小值.思考如何求解形如(x-a)2+(y-b)2的最值问题?,解如图所示,x2+y2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值.,考点1,考点2,考点3,考向四建立目标函数求最值问题例6设圆x2+y2=2的切线l与x轴正半轴,y轴正半轴分别交于点A,B,当|AB|取最小值时,切线l的方程为.思考如何借助圆的几何性质求有关线段长的最值?,答案:x+y-2=0,考点1,考点2,考点3,考点1,考点2,考点3,解题心得求解与圆有关的最值问题的两大规律:(1)借助几何性质求最值形如的最值问题,可转化为定点(a,b)与圆上的动点(x,y)的斜率的最值问题;形如t=ax+by的最值问题,可转化为动直线的截距的最值问题;形如u=(x-a)2+(y-b)2的最值问题,可转化为动点到定点的距离的平方的最值问题.(2)建立函数关系式求最值根据题目条件列出关于所求目标式子的函数关系式,然后根据关系式的特征选用参数法、配方法、判别式法等,利用基本不等式求最值是比较常用的.,考点1,考点2,考点3,(2)已知实数x,y满足(x-2)2+(y+1)2=1,则2x-y的最大值为,最小值为.(3)已知P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,则x2+y2的最小值为.(4)设P为直线3x-4y+11=0上的动点,过点P作圆C:x2+y2-2x-2y+1=0的两条切线,切点分别为A,B,则四边形PACB的面积的最小值为.,考点1,考点2,考点3,考点1,考点2,考点3,考点1,考点2,考点3,求半径常有以下方法:(1)若已知直线与圆相切,则圆心到切点(或切线)的距离等于半径;(2)若已知弦长、弦心距、半径,则可利用弦长的一半、弦心距、半径三者满足勾股定理的关系求得.1.求圆的方程需要三个独立条件,因此不论选用哪种形式的圆的方程都要列出三个独立的关系式.2.解答与圆有关的最值问题一般要结合代数式的几何意义进行,注意数形结合,充分运用圆的性质.3.解决与圆有关的轨迹问题,一定要看清要求,是求轨迹方程还是求轨迹.,易错警示轨迹问题易忘记特殊点的检验而致误典例设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM,ON为邻边作平行四边形MONP,求点P
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年长沙辅警招聘考试真题含答案详解(基础题)
- 2025护肤品代理合同书
- 2025年辽宁辅警招聘考试真题带答案详解
- 2025年酒泉辅警招聘考试题库含答案详解(综合题)
- 2025年资阳辅警协警招聘考试真题及答案详解(考点梳理)
- 2025年湛江辅警协警招聘考试真题含答案详解(精练)
- 2025年长治辅警招聘考试真题及参考答案详解
- 2025年锡林郭勒盟辅警招聘考试题库附答案详解(精练)
- 2025年赣州辅警协警招聘考试备考题库参考答案详解
- 2025年阿拉善盟辅警协警招聘考试真题附答案详解ab卷
- 中国各省地图形状文库1904354540-完整版
- 胸腔穿刺术课件
- 115个低风险组病种目录
- 和风日式 古风会议会展PPT模板
- GB∕T 709-2019 热轧钢板和钢带的尺寸、外形、重量及允许偏差
- aq 1043 矿用产品安全标志标识
- 小学语文教师业务理论考试试题
- 钢结构房屋防冷(热)桥问题解决方案
- 车架总成(半承载)设计规范
- 2022备考--析因纳律--质子守恒
- 2022年无人机驾驶证考试题库及答案
评论
0/150
提交评论