东南大学信号与系统MATLAB实践第二次作业.doc_第1页
东南大学信号与系统MATLAB实践第二次作业.doc_第2页
东南大学信号与系统MATLAB实践第二次作业.doc_第3页
东南大学信号与系统MATLAB实践第二次作业.doc_第4页
东南大学信号与系统MATLAB实践第二次作业.doc_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

练习二实验六一用MATLAB语言描述下列系统,并求出极零点、1. Ns=1;Ds=1,1;sys1=tf(Ns,Ds)实验结果:sys1 = 1 - s + 1 z,p,k=tf2zp(1,1,1)z = Empty matrix: 0-by-1p = -1k = 12. Ns=10Ds=1,-5,0sys2=tf(Ns,Ds)实验结果:Ns = 10Ds = 1 -5 0sys2 = 10 - s2 - 5 sz,p,k=tf2zp(10,1,-5,0)z = Empty matrix: 0-by-1p = 0 5k =10二已知系统的系统函数如下,用MATLAB描述下列系统。1 z=0;p=-1,-4;k=1;sys1=zpk(z,p,k)实验结果:sys1 = s - (s+1) (s+4) Continuous-time zero/pole/gain model.2. Ns=1,1Ds=1,0,-1sys2=tf(Ns,Ds)实验结果:Ns = 1 1Ds = 1 0 -1sys2 = s + 1 - s2 - 1 Continuous-time transfer function.3 Ns=1,6,6,0;Ds=1,6,8;sys3=tf(Ns,Ds)实验结果:Ns = 1 6 6 0Ds = 1 6 8sys3 = s3 + 6 s2 + 6 s - s2 + 6 s + 8 Continuous-time transfer function.六已知下列H(s)或H(z),请分别画出其直角坐标系下的频率特性曲线。1. clear;for n = 1:400 w(n) = (n-1)*0.05; H(n) = (1j*w(n)/(1j*w(n)+1);endmag = abs(H);phase = angle(H);subplot(2,1,1)plot(w,mag);title(幅频特性)subplot(2,1,2)plot(w,phase);title(相频特性)实验结果:2. clear;for n = 1:400 w(n) = (n-1)*0.05; H(n) = (2*j*w(n)/(1j*w(n)2+sqrt(2)*j*w(n)+1);endmag = abs(H);phase = angle(H);subplot(2,1,1)plot(w,mag);title(幅频特性)subplot(2,1,2)plot(w,phase);title(相频特性)实验结果:3. clear;for n = 1:400 w(n) = (n-1)*0.05; H(n) = (1j*w(n)+1)2/(1j*w(n)2+0.61);endmag = abs(H);phase = angle(H);subplot(2,1,1)plot(w,mag);title(幅频特性)subplot(2,1,2)plot(w,phase);title(相频特性)实验结果:4. clear;for n = 1:400 w(n) = (n-1)*0.05; H(n) =3*(1j*w(n)-1)*(1j*w(n)-2)/(1j*w(n)+1)*(1j*w(n)+2);endmag = abs(H);phase = angle(H);subplot(2,1,1)plot(w,mag);title(幅频特性)subplot(2,1,2)plot(w,phase);title(相频特性)实验结果:实验七三已知下列传递函数H(s)或H(z),求其极零点,并画出极零图。1. z=1,2;p=-1,-2;zplane(z,p)实验结果:2. z=1,2;p=-1,-2;zplane(z,p) num=1;den=1,0;z,p,k=tf2zp(num,den);zplane(z,p) num=1;den=1,0;z,p,k=tf2zp(num,den)zplane(z,p)实验结果:z = Empty matrix: 0-by-1p = 0k = 13. num=1,0,1;den=1,2,5;z,p,k=tf2zp(num,den)zplane(z,p)实验结果:z = 0 + 1.0000i 0 - 1.0000ip = -1.0000 + 2.0000i -1.0000 - 2.0000ik = 14. num=1.8,1.2,1.2,3;den=1,3,2,1;z,p,k=tf2zp(num,den)zplane(z,p)实验结果:z = -1.2284 0.2809 + 1.1304i 0.2809 - 1.1304ip = -2.3247 -0.3376 + 0.5623i -0.3376 - 0.5623ik =1.80005 clear;A=0,1,0; 0,0,1; -6,-11,-6;B=0;0;1;C=4,5,1;D=0;sys5=ss(A,B,C,D);pzmap(sys5)实验结果:五求出下列系统的极零点,判断系统的稳定性。1. clear;A=5,2,1,0; 0,4,6,0; 0,-3,-6,-1;1,-2,-1,3;B=1;2;3;4;C=1,2,5,2;D=0;sys=ss(A,B,C,D);z,p,k=ss2zp(A,B,C,D,1)pzmap(sys)实验结果:z = 4.0280 + 1.2231i 4.0280 - 1.2231i 0.2298 p = -3.4949 4.4438 + 0.1975i 4.4438 - 0.1975i 0.6074 k =28由求得的极点,该系统不稳定。4.z=-3P=-1,-5,-15所以该系统为稳定的。5. num=100*conv(1,0,conv(1,2,conv(1,2,conv(1,3,2,1,3,2);den=conv(1,1,conv(1,-1,conv(1,3,5,2,conv(1,0,2,0,4,1,0,2,0,4);z,p,k=tf2zp(num,den)实验结果:z = 0 -2.0005 + 0.0005i -2.0005 - 0.0005i -1.9995 + 0.0005i -1.9995 - 0.0005i -1.0000 + 0.0000i -1.0000 - 0.0000ip = 1.0000 0.7071 + 1.2247i 0.7071 - 1.2247i 0.7071 + 1.2247i 0.7071 - 1.2247i -1.2267 + 1.4677i -1.2267 - 1.4677i -0.7071 + 1.2247i -0.7071 - 1.2247i -0.7071 + 1.2247i -0.7071 - 1.2247i -1.0000 -0.5466 zplane(z,p)所以该系统不稳定。七已知反馈系统开环转移函数如下,试作其奈奎斯特图,并判断系统是否稳定。1. b=1;a=1,3,2;sys=tf(b,a);nyquist(sys);实验结果:由于奈奎斯特图并未围绕上-1点运动,同时其开环转移函数也是稳定的,由此,该线性负反馈系统也是稳定的。2 b=1;a=1,4,4,0;sys=tf(b,a);nyqui

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论