新课标高一数学必修14练习题.doc_第1页
新课标高一数学必修14练习题.doc_第2页
新课标高一数学必修14练习题.doc_第3页
新课标高一数学必修14练习题.doc_第4页
新课标高一数学必修14练习题.doc_第5页
已阅读5页,还剩44页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

(数学1必修)第一章(上) 集合基础训练A组一、选择题1下列各项中,不可以组成集合的是( )A所有的正数 B等于的数 C接近于的数 D不等于的偶数2下列四个集合中,是空集的是( )A BC DABC3下列表示图形中的阴影部分的是( )ABCD 4下面有四个命题:(1)集合中最小的数是;(2)若不属于,则属于;(3)若则的最小值为;(4)的解可表示为;其中正确命题的个数为( )A个 B个 C个 D个5若集合中的元素是的三边长,则一定不是( )A锐角三角形 B直角三角形 C钝角三角形 D等腰三角形6若全集,则集合的真子集共有( )A个 B个 C个 D个二、填空题1用符号“”或“”填空(1)_, _, _(2)(是个无理数)(3)_2. 若集合,则的非空子集的个数为 。3若集合,则_4设集合,且,则实数的取值范围是 。5已知,则_。三、解答题1已知集合,试用列举法表示集合。2已知,,求的取值范围。3已知集合,若,求实数的值。子曰:温故而知新,可以为师矣。4设全集,(数学1必修)第一章(中) 函数及其表示基础训练A组一、选择题1判断下列各组中的两个函数是同一函数的为( ),;,;,;,;,。A、 B、 C D、2函数的图象与直线的公共点数目是( )A B C或 D或3已知集合,且使中元素和中的元素对应,则的值分别为( )A B C D4已知,若,则的值是( )A B或 C,或 D5为了得到函数的图象,可以把函数的图象适当平移,这个平移是( )A沿轴向右平移个单位 B沿轴向右平移个单位C沿轴向左平移个单位 D沿轴向左平移个单位6设则的值为( )A B C D二、填空题1设函数则实数的取值范围是 。2函数的定义域 。3若二次函数的图象与x轴交于,且函数的最大值为,则这个二次函数的表达式是 。4函数的定义域是_。5函数的最小值是_。三、解答题1求函数的定义域。2求函数的值域。3是关于的一元二次方程的两个实根,又,求的解析式及此函数的定义域。4已知函数在有最大值和最小值,求、的值。(数学1必修)第一章(下) 函数的基本性质基础训练A组一、选择题1已知函数为偶函数,则的值是( )A. B. C. D. 2若偶函数在上是增函数,则下列关系式中成立的是( )A BC D3如果奇函数在区间 上是增函数且最大值为,那么在区间上是( )A增函数且最小值是 B增函数且最大值是C减函数且最大值是 D减函数且最小值是4设是定义在上的一个函数,则函数在上一定是( )A奇函数 B偶函数 C既是奇函数又是偶函数 D非奇非偶函数。5下列函数中,在区间上是增函数的是( )A B C D6函数是( )A是奇函数又是减函数 B是奇函数但不是减函数 C是减函数但不是奇函数 D不是奇函数也不是减函数二、填空题1设奇函数的定义域为,若当时, 的图象如右图,则不等式的解是 2函数的值域是_。3已知,则函数的值域是 .4若函数是偶函数,则的递减区间是 .5下列四个命题(1)有意义; (2)函数是其定义域到值域的映射;(3)函数的图象是一直线;(4)函数的图象是抛物线,其中正确的命题个数是_。三、解答题1判断一次函数反比例函数,二次函数的单调性。2已知函数的定义域为,且同时满足下列条件:(1)是奇函数;(2)在定义域上单调递减;(3)求的取值范围。3利用函数的单调性求函数的值域;4已知函数. 当时,求函数的最大值和最小值; 求实数的取值范围,使在区间上是单调函数。数学1(必修)第二章 基本初等函数(1)基础训练A组一、选择题1下列函数与有相同图象的一个函数是( )A BC D2下列函数中是奇函数的有几个( ) A B C D3函数与的图象关于下列那种图形对称( )A轴 B轴 C直线 D原点中心对称4已知,则值为( )A. B. C. D. 5函数的定义域是( )A B C D6三个数的大小关系为( )A. B. C D. 7若,则的表达式为( )A B C D二、填空题1从小到大的排列顺序是 。2化简的值等于_。3计算:= 。4已知,则的值是_。5方程的解是_。6函数的定义域是_;值域是_.7判断函数的奇偶性 。三、解答题1已知求的值。2计算的值。3已知函数,求函数的定义域,并讨论它的奇偶性单调性。子曰:我非生而知之者,好古,敏以求之者也。4(1)求函数的定义域。(2)求函数的值域。数学1(必修)第三章 函数的应用(含幂函数)基础训练A组一、选择题1若上述函数是幂函数的个数是( )A个 B个 C个 D个2已知唯一的零点在区间、内,那么下面命题错误的( )A函数在或内有零点B函数在内无零点C函数在内有零点 D函数在内不一定有零点3若,则与的关系是( )A B C D4 求函数零点的个数为 ( )A B C D5已知函数有反函数,则方程 ( )A有且仅有一个根 B至多有一个根C至少有一个根 D以上结论都不对6如果二次函数有两个不同的零点,则的取值范围是( )A B C D7某林场计划第一年造林亩,以后每年比前一年多造林,则第四年造林( )A亩 B亩 C亩 D亩二、填空题1若函数既是幂函数又是反比例函数,则这个函数是= 。2幂函数的图象过点,则的解析式是_。3用“二分法”求方程在区间内的实根,取区间中点为,那么下一个有根的区间是 。4函数的零点个数为 。5设函数的图象在上连续,若满足 ,方程在上有实根三、解答题1用定义证明:函数在上是增函数。2设与分别是实系数方程和的一个根,且 ,求证:方程有仅有一根介于和之间。3函数在区间上有最大值,求实数的值。4某商品进货单价为元,若销售价为元,可卖出个,如果销售单价每涨元,销售量就减少个,为了获得最大利润,则此商品的最佳售价应为多少?.(数学2必修)第一章 空间几何体基础训练A组一、选择题1有一个几何体的三视图如下图所示,这个几何体应是一个( )A.棱台 B.棱锥 C.棱柱 D.都不对 主视图 左视图 俯视图2棱长都是的三棱锥的表面积为( )A. B. C. D. 3长方体的一个顶点上三条棱长分别是,且它的个顶点都在同一球面上,则这个球的表面积是( ) A B C D都不对4正方体的内切球和外接球的半径之比为( )A B C D5在ABC中,,若使绕直线旋转一周,则所形成的几何体的体积是( )A. B. C. D. 6底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为,它的对角线的长分别是和,则这个棱柱的侧面积是( ) A B C D二、填空题1一个棱柱至少有 _个面,面数最少的一个棱锥有 _个顶点,顶点最少的一个棱台有 _条侧棱。2若三个球的表面积之比是,则它们的体积之比是_。3正方体 中,是上底面中心,若正方体的棱长为,则三棱锥的体积为_。4如图,分别为正方体的面、面的中心,则四边形 在该正方体的面上的射影可能是_。5已知一个长方体共一顶点的三个面的面积分别是、,这个 长方体的对角线长是_;若长方体的共顶点的三个侧面面积分别为,则它的体积为_.三、解答题1养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用),已建的仓库的底面直径为,高,养路处拟建一个更大的圆锥形仓库,以存放更多食盐,现有两种方案:一是新建的仓库的底面直径比原来大(高不变);二是高度增加 (底面直径不变)。(1) 分别计算按这两种方案所建的仓库的体积;(2) 分别计算按这两种方案所建的仓库的表面积;(3) 哪个方案更经济些?2将圆心角为,面积为的扇形,作为圆锥的侧面,求圆锥的表面积和体积数学2必修)第二章 点、直线、平面之间的位置关系 基础训练A组一、选择题1下列四个结论:两条直线都和同一个平面平行,则这两条直线平行。两条直线没有公共点,则这两条直线平行。两条直线都和第三条直线垂直,则这两条直线平行。一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。其中正确的个数为( )A B C D2下面列举的图形一定是平面图形的是( )A有一个角是直角的四边形 B有两个角是直角的四边形 C有三个角是直角的四边形 D有四个角是直角的四边形3垂直于同一条直线的两条直线一定( )A平行 B相交 C异面 D以上都有可能4如右图所示,正三棱锥(顶点在底面的射影是底面正三角形的中心)中,分别是 的中点,为上任意一点,则直线与所成的角的大小是()A B C D随点的变化而变化。5互不重合的三个平面最多可以把空间分成( )个部分 A B C D6把正方形沿对角线折起,当以四点为顶点的三棱锥体积最大时,直线和平面所成的角的大小为( )A B C D 二、填空题1 已知是两条异面直线,那么与的位置关系_。2 直线与平面所成角为,则与所成角的取值范围是 _ 3棱长为的正四面体内有一点,由点向各面引垂线,垂线段长度分别为,则的值为 。4直二面角的棱上有一点,在平面内各有一条射线,与成,则 。5下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;(3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有_。三、解答题1已知为空间四边形的边上的点,且求证:. 2自二面角内一点分别向两个半平面引垂线,求证:它们所成的角与二两角的平面角互补。 (数学2必修)第三章 直线与方程 基础训练A组一、选择题1设直线的倾斜角为,且,则满足( )ABCD2过点且垂直于直线 的直线方程为( )A BC D3已知过点和的直线与直线平行,则的值为()A B C D4已知,则直线通过( )A第一、二、三象限B第一、二、四象限C第一、三、四象限D第二、三、四象限5直线的倾斜角和斜率分别是( )A B C,不存在 D,不存在6若方程表示一条直线,则实数满足( )A B C D,二、填空题1点 到直线的距离是_.2已知直线若与关于轴对称,则的方程为_;若与关于轴对称,则的方程为_;若与关于对称,则的方程为_;3 若原点在直线上的射影为,则的方程为_。4点在直线上,则的最小值是_.5直线过原点且平分的面积,若平行四边形的两个顶点为,则直线的方程为_。三、解答题1已知直线, (1)系数为什么值时,方程表示通过原点的直线; (2)系数满足什么关系时与坐标轴都相交; (3)系数满足什么条件时只与x轴相交; (4)系数满足什么条件时是x轴; (5)设为直线上一点,证明:这条直线的方程可以写成2求经过直线的交点且平行于直线的直线方程。3经过点并且在两个坐标轴上的截距的绝对值相等的直线有几条?请求出这些直线的方程。4过点作一直线,使它与两坐标轴相交且与两轴所围成的三角形面积为(数学2必修)第四章 圆与方程 基础训练A组一、选择题圆关于原点对称的圆的方程为 ( ) A BCD2若为圆的弦的中点,则直线的方程是( ) A. B. C. D. 3圆上的点到直线的距离最大值是( )A B C D4将直线,沿轴向左平移个单位,所得直线与圆相切,则实数的值为()ABCD5在坐标平面内,与点距离为,且与点距离为的直线共有( )A条 B条C条 D条6圆在点处的切线方程为( )A B C D二、填空题1若经过点的直线与圆相切,则此直线在轴上的截距是 _.2由动点向圆引两条切线,切点分别为,则动点的轨迹方程为 。3圆心在直线上的圆与轴交于两点,则圆的方程为 . 已知圆和过原点的直线的交点为则的值为_。5已知是直线上的动点,是圆的切线,是切点,是圆心,那么四边形面积的最小值是_。三、解答题1点在直线上,求的最小值。2求以为直径两端点的圆的方程。3求过点和且与直线相切的圆的方程。4已知圆和轴相切,圆心在直线上,且被直线截得的弦长为,求圆的方程。数学4必修)第一章 三角函数(上)基础训练A组一、选择题1设角属于第二象限,且,则角属于( )A第一象限 B第二象限 C第三象限 D第四象限2给出下列各函数值:;.其中符号为负的有( )A B C D3等于( )A B C D4已知,并且是第二象限的角,那么的值等于( )A. B. C. D.5若是第四象限的角,则是( )A.第一象限的角 B.第二象限的角 C.第三象限的角 D.第四象限的角6的值( )A.小于 B.大于 C.等于 D.不存在二、填空题1设分别是第二、三、四象限角,则点分别在第_、_、_象限2设和分别是角的正弦线和余弦线,则给出的以下不等式:; ;,其中正确的是_。3若角与角的终边关于轴对称,则与的关系是_。4设扇形的周长为,面积为,则扇形的圆心角的弧度数是 。5与终边相同的最小正角是_。三、解答题1已知是关于的方程的两个实根,且,求的值2已知,求的值。3化简:4已知,求(1);(2)的值。(数学4必修)第一章 三角函数(下) 基础训练A组一、选择题1函数是上的偶函数,则的值是( )A B C. D.2将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的僻析式是( )A B C. D.3若点在第一象限,则在内的取值范围是( )A B.C. D.4若则( )A B C D5函数的最小正周期是( )A B C D6在函数、中,最小正周期为的函数的个数为( )A个 B个 C个 D个二、填空题1关于的函数有以下命题: 对任意,都是非奇非偶函数;不存在,使既是奇函数,又是偶函数;存在,使是偶函数;对任意,都不是奇函数.其中一个假命题的序号是 ,因为当 时,该命题的结论不成立.2函数的最大值为_.3若函数的最小正周期满足,则自然数的值为_.4满足的的集合为_。5若在区间上的最大值是,则=_。三、解答题1画出函数的图象。2比较大小(1);(2)3(1)求函数的定义域。(2)设,求的最大值与最小值。4若有最大值和最小值,求实数的值。(数学4必修)第二章 平面向量 基础训练A组一、选择题1化简得( )A B C D2设分别是与向的单位向量,则下列结论中正确的是( )A B C D3已知下列命题中:(1)若,且,则或,(2)若,则或(3)若不平行的两个非零向量,满足,则(4)若与平行,则其中真命题的个数是( )A B C D4下列命题中正确的是( )A若ab0,则a0或b0 B若ab0,则abC若ab,则a在b上的投影为|a| D若ab,则ab(ab)25已知平面向量,且,则( )A B C D6已知向量,向量则的最大值,最小值分别是( )A B C D二、填空题1若=,=,则=_2平面向量中,若,=1,且,则向量=_。3若,,且与的夹角为,则 。4把平面上一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是_。5已知与,要使最小,则实数的值为_。三、解答题AGEFCBD1如图,中,分别是的中点,为交点,若=,=,试以,为基底表示、2已知向量的夹角为,,求向量的模。3已知点,且原点分的比为,又,求在上的投影。4已知,当为何值时,(1)与垂直?(2)与平行?平行时它们是同向还是反向?(数学4必修)第三章 三角恒等变换基础训练A组一、选择题1已知,则( )A B C D2函数的最小正周期是( )A. B. C. D.3在ABC中,则ABC为( )A锐角三角形 B直角三角形 C钝角三角形 D无法判定4设,则大小关系( )A B C D5函数是( )A.周期为的奇函数 B.周期为的偶函数C.周期为的奇函数 D.周期为的偶函数6已知,则的值为( )A B C D二、填空题1求值:_。2若则 。3函数的最小正周期是_。4已知那么的值为 ,的值为 。5的三个内角为、,当为 时,取得最大值,且这个最大值为 。三、解答题1已知求的值.2若求的取值范围。3求值:4已知函数(1)求取最大值时相应的的集合;(2)该函数的图象经过怎样的平移和伸变换可以得到的图象.(数学1必修)第一章(上) 基础训练A组一、选择题 1. C 元素的确定性;2. D 选项A所代表的集合是并非空集,选项B所代表的集合是并非空集,选项C所代表的集合是并非空集,选项D中的方程无实数根;3. A 阴影部分完全覆盖了C部分,这样就要求交集运算的两边都含有C部分;4. A (1)最小的数应该是,(2)反例:,但(3)当,(4)元素的互异性5. D 元素的互异性;6. C ,真子集有。二、填空题 1. 是自然数,是无理数,不是自然数,; 当时在集合中2. ,非空子集有;3. ,显然4. ,则得5. ,。三、解答题 1.解:由题意可知是的正约数,当;当;当;当;而,即 ; 2.解:当,即时,满足,即;当,即时,满足,即;当,即时,由,得即; 3.解:,而,当, 这样与矛盾; 当符合 4.解:当时,即; 当时,即,且 ,而对于,即,(数学1必修)第一章(中) 基础训练A组一、选择题 1. C (1)定义域不同;(2)定义域不同;(3)对应法则不同;(4)定义域相同,且对应法则相同;(5)定义域不同; 2. C 有可能是没有交点的,如果有交点,那么对于仅有一个函数值;3. D 按照对应法则, 而,4. D 该分段函数的三段各自的值域为,而 ;1. D 平移前的“”,平移后的“”,用“”代替了“”,即,左移6. B 。二、填空题 1. 当,这是矛盾的;当;2. 3. 设,对称轴,当时,4. 5. 。三、解答题 1.解:,定义域为2.解: ,值域为3.解:, 。4. 解:对称轴,是的递增区间, (数学1必修)第一章下 基础训练A组一、选择题 1. B 奇次项系数为2. D 3. A 奇函数关于原点对称,左右两边有相同的单调性4. A 5 A 在上递减,在上递减,在上递减,6. A 为奇函数,而为减函数。二、填空题1 奇函数关于原点对称,补足左边的图象2. 是的增函数,当时,3 该函数为增函数,自变量最小时,函数值最小;自变量最大时,函数值最大4 5 (1),不存在;(2)函数是特殊的映射;(3)该图象是由离散的点组成的;(4)两个不同的抛物线的两部分组成的,不是抛物线。三、解答题1解:当,在是增函数,当,在是减函数;当,在是减函数,当,在是增函数;当,在是减函数,在是增函数,当,在是增函数,在是减函数。2解:,则,3解:,显然是的增函数, 4解:对称轴(2)对称轴当或时,在上单调或。(数学1必修)第二章 基本初等函数(1)基础训练A组 一、选择题 1. D ,对应法则不同;2. D 对于,为奇函数;对于,显然为奇函数;显然也为奇函数;对于,为奇函数;3. D 由得,即关于原点对称;4. B 5. D 6. D 当范围一致时,;当范围不一致时,注意比较的方法,先和比较,再和比较7 D 由得二、填空题1 ,而2. 3. 原式4. ,5. 6. ;7. 奇函数 三、解答题1解:2解:原式 3解:且,且,即定义域为; 为奇函数; 在上为减函数。4解:(1),即定义域为;(2)令,则,即值域为。数学1(必修)第三章 函数的应用 基础训练A组 一、选择题 1. C 是幂函数2. C 唯一的零点必须在区间,而不在3. A ,4. C ,显然有两个实数根,共三个;5. B 可以有一个实数根,例如,也可以没有实数根,例如6. D 或7 C 二、填空题1 设则 2. ,3. 令 4. 分别作出的图象;5. 见课本的定理内容三、解答题1证明:设 即,函数在上是增函数。2解:令由题意可知因为,即方程有仅有一根介于和之间。3解:对称轴,当是的递减区间,;当是的递增区间,;当时与矛盾;所以或。4解:设最佳售价为元,最大利润为元, 当时,取得最大值,所以应定价为元。数学2(必修)第一章 空间几何体 基础训练A组一、选择题 1. A 从俯视图来看,上、下底面都是正方形,但是大小不一样,可以判断是棱台2.A 因为四个面是全等的正三角形,则3.B 长方体的对角线是球的直径,4.D 正方体的棱长是内切球的直径,正方体的对角线是外接球的直径,设棱长是 5.D 6.D 设底面边长是,底面的两条对角线分别为,而而即二、填空题1. 符合条件的几何体分别是:三棱柱,三棱锥,三棱台2. 3. 画出正方体,平面与对角线的交点是对角线的三等分点,三棱锥的高或:三棱锥也可以看成三棱锥,显然它的高为,等腰三角形为底面。4. 平行四边形或线段5 设则 设则 三、解答题1解:(1)如果按方案一,仓库的底面直径变成,则仓库的体积如果按方案二,仓库的高变成,则仓库的体积(2)如果按方案一,仓库的底面直径变成,半径为.棱锥的母线长为则仓库的表面积如果按方案二,仓库的高变成.棱锥的母线长为 则仓库的表面积(3) , 2. 解:设扇形的半径和圆锥的母线都为,圆锥的半径为,则 ; 第二章 点、直线、平面之间的位置关系 基础训练A组一、选择题 1. A 两条直线都和同一个平面平行,这两条直线三种位置关系都有可能两条直线没有公共点,则这两条直线平行或异面两条直线都和第三条直线垂直,则这两条直线三种位置关系都有可能一条直线和一个平面内无数条直线没有公共点,则这条直线也可在这个平面内2. D 对于前三个,可以想象出仅有一个直角的平面四边形沿着非直角所在的对角线翻折;对角为直角的平面四边形沿着非直角所在的对角线翻折;在翻折的过程中,某个瞬间出现了有三个直角的空间四边形3.D 垂直于同一条直线的两条直线有三种位置关系4.B 连接,则垂直于平面,即,而,5.D 八卦图 可以想象为两个平面垂直相交,第三个平面与它们的交线再垂直相交6.C 当三棱锥体积最大时,平面,取的中点,则是等要直角三角形,即二、填空题1.异面或相交 就是不可能平行2. 直线与平面所成的的角为与所成角的最小值,当在内适当旋转就可以得到,即与所成角的的最大值为3. 作等积变换:而4.或 不妨固定,则有两种可能5. 对于(1)、平行于同一直线的两个平面平行,反例为:把一支笔放在打开的课本之间;(2)是对的;(3)是错的;(4)是对的三、解答题1.证明:2.略第三章 直线和方程 基础训练A组一、选择题 1.D 2.A 设又过点,则,即3.B 4.C 5.C 垂直于轴,倾斜角为,而斜率不存在6.C 不能同时为二、填空题1. 2. 3. 4. 可看成原点到直线上的点的距离的平方,垂直时最短:5. 平分平行四边形的面积,则直线过的中点三、解答题1. 解:(1)把原点代入,得;(2)此时斜率存在且不为零即且;(3)此时斜率不存在,且不与轴重合,即且;(4)且(5)证明:在直线上 。2. 解:由,得,再设,则 为所求。3. 解:当截距为时,设,过点,则得,即;当截距不为时,设或过点,则得,或,即,或这样的直线有条:,或。4. 解:设直线为交轴于点,交轴于点, 得,或 解得或 ,或为所求。第四章 圆和方程 基础训练A组一、选择题 1.A 关于原点得,则得2.A 设圆心为,则3.B 圆心为4.A 直线沿轴向左平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论