




已阅读5页,还剩23页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1讲直线与圆,高考定位1.直线方程、圆的方程、两直线的平行与垂直、直线与圆的位置关系是本讲高考的重点;2.考查的主要内容包括求直线(圆)的方程、点到直线的距离、直线与圆的位置关系判断、简单的弦长与切线问题,多为选择题、填空题.,答案A,真题感悟,2.(2018天津卷)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为_.,答案x2y22x0,答案4,答案3,考点整合,4.直线与圆的位置关系的判定(1)几何法:把圆心到直线的距离d和半径r的大小加以比较:dr相离.(2)代数法:将圆的方程和直线的方程联立起来组成方程组,利用判别式来讨论位置关系:0相交;0相切;0),则A(0,a).,探究提高1.直接法求圆的方程,根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程.2.待定系数法求圆的方程:(1)若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,依据已知条件列出关于a,b,r的方程组,从而求出a,b,r的值;(2)若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D,E,F的方程组,进而求出D,E,F的值.温馨提醒解答圆的方程问题,应注意数形结合,充分运用圆的几何性质.,解析(1)由题意知,椭圆顶点的坐标为(0,2),(0,2),(4,0),(4,0).由圆心在x轴的正半轴上知圆过顶点(0,2),(0,2),(4,0).设圆的标准方程为(xm)2y2r2,,(2)圆C的圆心在x轴的正半轴上,设C(a,0),且a0.,因此圆C的方程为(x2)2y29.,解析(1)点P(3,1)关于x轴的对称点为P(3,1),所以直线PQ的方程为x(a3)ya0.依题意,直线PQ与圆x2y21相切.,(2)易知点B在直线y2上,过点A(0,2)作圆的切线.设切线的斜率为k,则切线方程为ykx2,即kxy20.,考法2圆的弦长相关计算【例32】(2017全国卷)在直角坐标系xOy中,曲线yx2mx2与x轴交于A,B两点,点C的坐标为(0,1).当m变化时,解答下列问题:(1)能否出现ACBC的情况?说明理由;(2)证明过A,B,C三点的圆在y轴上截得的弦长为定值.,(1)解不能出现ACBC的情况,理由如下:设A(x1,0),B(x2,0),则x1,x2满足方程x2mx20,所以x1x22.又C的坐标为(0,1),,所以不能出现ACBC的情况.,又xmx220,,即过A,B,C三点的圆在y轴上截得的弦长为定值.,故所求直线l的方程为y(x3),即xy30.答案(1)B(2)xy30,(2)圆C的标准方程为(x4)2(y1)29,圆C的圆心C(4,1),半径r3.又直线l:ya(x3)过定点P(3,0),则当直线ya(x3)与直线CP垂直时,被圆C截得的弦长最短.,1.解决直线方程问题应注意:,(1)要注意几种直线方程的局限性.点斜式方程不能表示与x轴垂直的直线、截距式方程不能表示过原点和垂直于坐标轴的直线、两点式方程不能表示与坐标轴垂直的直线.(2)求直线方程要考虑直线斜率是否存在.(3)求解两条直线平行的问题时,在利用A1B2A2B10建立方程求出参数的值后,要注意代入检验,排除两条直线重合的可能性.,2.求圆的方程两种主要方法:,(1)直接法:利用圆的性质、直线与圆、圆与圆的位置关系,数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年公路水运工程试验检测师公共基础试题及答案(法规与技术标准)解析
- 全2025年公路水运试验检测人员考试题库及答案
- 2017年6月国开电大法律事务专科《行政法与行政诉讼法》期末纸质考试试题及答案
- 2025 年小升初沧州市初一新生分班考试英语试卷(带答案解析)-(人教版)
- 事业单位年度考核表个人总结2025教师7篇
- 北师大版灵宝市20252025学年度上期期末综合测试小学五年级语文试卷及参考答案
- 安徽省阜阳市界首市2024-2025学年八年级(下)期末物理试卷(含答案)
- 承包水立方合同范本
- 防疫车辆租车合同范本
- 工程劳务合同范本模板
- 轴承装配组装SOP
- 过敏性休克完整版本
- DL∕ T 5100-1999 水工混凝土外加剂技术规程
- 合同未签订提前供货函模板
- 小学必背古诗词182首(带目录及释义)人教(部编版)
- 2024年东南亚一体式直流充电桩市场深度研究及预测报告
- DZ∕T 0213-2020 矿产地质勘查规范 石灰岩、水泥配料类(正式版)
- 学校食堂食材采购询价方案范文(35篇)
- 2023年广西现代物流集团社会招聘、校园招聘考试真题及答案
- 保险公司案件风险排查工作报告
- 《化妆品技术》课件-化妆品的历史起源与发展
评论
0/150
提交评论