2019年秋九年级数学上册 第1章 二次函数本章总结提升导学课件(新版)浙教版.ppt_第1页
2019年秋九年级数学上册 第1章 二次函数本章总结提升导学课件(新版)浙教版.ppt_第2页
2019年秋九年级数学上册 第1章 二次函数本章总结提升导学课件(新版)浙教版.ppt_第3页
2019年秋九年级数学上册 第1章 二次函数本章总结提升导学课件(新版)浙教版.ppt_第4页
2019年秋九年级数学上册 第1章 二次函数本章总结提升导学课件(新版)浙教版.ppt_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第1章二次函数,本章总结提升,整合提升,第1章二次函数,知识框架,本章总结提升,知识框架,目标,归纳抽象,整合提升,问题1抛物线的平移,抛物线yax2经过怎样的平移可以得到抛物线ya(xm)2k?,例1已知某抛物线和坐标轴的交点坐标分别为(3,0),(1,0)和(0,3),回答下列问题:(1)求该抛物线的函数表达式;(2)请对该抛物线给出一种平移方案,使平移后的抛物线经过原点,本章总结提升,解:(1)抛物线与x轴的交点坐标为(3,0),(1,0),设抛物线的函数表达式为ya(x3)(x1)(a0)当x0时,y3,3(03)(01)a,a1,y(x3)(x1),即yx22x3.(2)在抛物线上取一点P(1,4),将点P向左平移1个单位,再向上平移4个单位,得点P(0,0),将抛物线向左平移1个单位,再向上平移4个单位后所得的抛物线经过原点(0,0)注:(2)题答案不唯一,本章总结提升,【归纳总结】,本章总结提升,问题2二次函数的图象及性质,结合二次函数的图象回顾二次函数的性质,例如根据抛物线的开口方向、顶点坐标,说明二次函数在什么情况下取得最大(小)值,本章总结提升,例2二次函数yax2bxc(a0)的图象如图1T1所示,有下列说法:2ab0;当1x3时,y0;若点(x1,y1),(x2,y2)在函数图象上,当x1x2时,y1y2;9a3bc0.其中正确的是()ABCD,B,图1T1,本章总结提升,本章总结提升,抛物线的对称轴为直线x1,开口向上,若点(x1,y1),(x2,y2)在函数图象上,当1y2,故错误;二次函数yax2bxc的图象过点(3,0),当x3时,y0,即9a3bc0,故正确故选B.,本章总结提升,【归纳总结】,本章总结提升,本章总结提升,本章总结提升,问题3求二次函数的表达式,用待定系数法求二次函数的表达式的方法有哪些?,例3已知一条抛物线与x轴的交点是A(2,0),B(1,0),且经过点C(2,8)(1)求该抛物线的函数表达式;(2)求该抛物线的顶点坐标,本章总结提升,【解析】本题可用待定系数法求抛物线的函数表达式,求该抛物线的顶点坐标可将表达式配方成顶点式,本章总结提升,本章总结提升,【归纳总结】用待定系数法求二次函数的表达式,本章总结提升,本章总结提升,例42016荆门若二次函数yx2mx的图象的对称轴是直线x3,则关于x的方程x2mx7的解为()Ax10,x26Bx11,x27Cx11,x27Dx11,x27,问题4二次函数与一元二次方程的关系,结合抛物线yax2bxc与x轴的位置关系,说明方程ax2bxc0的根的各种情况,D,本章总结提升,例5已知抛物线yx22(m1)xm27与x轴有两个不同的交点(1)求m的取值范围;(2)若抛物线与x轴交于A,B两点,点A的坐标为(3,0),求点B的坐标.,【解析】(1)根据b24ac0确定m的取值范围;(2)可以把x3,y0代入表达式,求出m的值,但要注意m的值应符合(1)中的要求,本章总结提升,解:(1)抛物线yx22(m1)xm27与x轴有两个不同的交点,方程x22(m1)xm270有两个不同的实数根,b24ac0,即4(m1)24(m27)0,解得m4.(2)把x3,y0代入表达式,得96(m1)m270,即m26m80,解得m12,m24.m4,m2,函数表达式为yx22x3.令y0,则x22x30,解得x13,x21,点B的坐标为(1,0),本章总结提升,【归纳总结】,本章总结提升,问题5二次函数最值问题的实际应用,在日常生活、生产和科研中,常常会遇到求什么条件下可以使材料最省、时间最少、效率最高等问题,其中一些问题可以归纳为求二次函数的最大值或最小值请举例说明如何分析、解决这样的问题,本章总结提升,例62017湖州湖州素有鱼米之乡之称,某水产养殖大户为了更好地发挥技术优势,一次性收购了20000kg淡水鱼,计划养殖一段时间后再出售已知每天放养的费用相同,放养10天的总成本为30.4万元;放养20天的总成本为30.8万元(总成本放养总费用收购成本)(1)设每天的放养费用是a万元,收购成本为b万元,求a和b的值,本章总结提升,(2)设这批淡水鱼放养t天后的质量为m(kg),销售单价为y元/kg.根据以往经验可知:m与t的函数关系为my与t的函数关系如图1T2所示分别求出当0t50和50t100时,y与t之间的函数表达式;设将这批淡水鱼放养t天后一次性出售所得利润为W元,求当t为何值时,W最大,并求出最大值(利润销售总额总成本),图1T2,本章总结提升,本章总结提升,本章总结提升,本章总结提升,【归纳总结】二次函数的实际应用,本章总结提升,本章总结提升,注意:(1)当题目中没有给出平面直角坐标系时,选取的平面直角坐标系不同,所得函数表达式也不同(2)在求二次函数的最值时,要注意实际问题中自变量的取值的限制对最值的影响(3)建立函数模型解决实际问题时,题目中没有明确函数类型时,要对求出的函数表达式进行验证,防止出现错解,本章总结提升,问题6二次函数与几何的综合,例72017镇江如图1T3,在平面直角坐标系中,矩形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(4,t)(t0)二次函数yx2bx(b0)的图象经过点B,顶点为D.(1)当t12时,顶点D到x轴的距离等于_;(2)E是二次函数yx2bx(b0)的图象与x轴的一个公共点(点E与点O不重合)求OEEA的最大值及取得最大值时的二次函数表达式;,本章总结提升,本章总结提升,解:(2)二次函数yx2bx(b0)的图象与x轴交于点E,E(b,0),OEb,EA4b.OEEAb(b4)b24b(b2)24.当b2时,OEEA有最大值,其最大值为4.此时二次函数的表达式为yx22x.,本章总结提升,本章总结

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论