浙江专用2020版高考数学新增分大一轮复习第五章三角函数解三角形5.6正弦定理和余弦定理课件.ppt_第1页
浙江专用2020版高考数学新增分大一轮复习第五章三角函数解三角形5.6正弦定理和余弦定理课件.ppt_第2页
浙江专用2020版高考数学新增分大一轮复习第五章三角函数解三角形5.6正弦定理和余弦定理课件.ppt_第3页
浙江专用2020版高考数学新增分大一轮复习第五章三角函数解三角形5.6正弦定理和余弦定理课件.ppt_第4页
浙江专用2020版高考数学新增分大一轮复习第五章三角函数解三角形5.6正弦定理和余弦定理课件.ppt_第5页
已阅读5页,还剩67页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

5.6正弦定理和余弦定理,第五章三角函数、解三角形,NEIRONGSUOYIN,内容索引,基础知识自主学习,题型分类深度剖析,课时作业,1,基础知识自主学习,PARTONE,知识梳理,1.正弦定理、余弦定理在ABC中,若角A,B,C所对的边分别是a,b,c,R为ABC外接圆半径,则,ZHISHISHULI,b2c22bccosA,c2a22cacosB,a2b22abcosC,2RsinB,2RsinC,sinAsinBsinC,2.在ABC中,已知a,b和A时,解的情况,3.三角形常用面积公式,1.在ABC中,AB是否可推出sinAsinB?,【概念方法微思考】,提示在ABC中,由AB可推出sinAsinB.,2.如图,在ABC中,有如下结论:bcosCccosBa.试类比写出另外两个式子.,提示acosBbcosAc;acosCccosAb.,基础自测,JICHUZICE,题组一思考辨析1.判断下列结论是否正确(请在括号中打“”或“”)(1)三角形中三边之比等于相应的三个内角之比.()(2)当b2c2a20时,三角形ABC为锐角三角形.(),1,2,3,4,5,6,(4)在三角形中,已知两边和一角就能求三角形的面积.(),题组二教材改编,1,2,3,4,5,6,2.P10B组T2在ABC中,acosAbcosB,则这个三角形的形状为_.,等腰三角,形或直角三角形,解析由正弦定理,得sinAcosAsinBcosB,即sin2Asin2B,所以2A2B或2A2B,即AB或AB,所以这个三角形为等腰三角形或直角三角形.,1,2,3,4,5,6,sinB1,B90,,1,2,3,4,5,6,题组三易错自纠4.在ABC中,角A,B,C所对的边分别为a,b,c,若cbcosA,则ABC为A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形,解析由已知及正弦定理得sinC0,cosB0,B为钝角,故ABC为钝角三角形.,1,2,3,4,5,6,角B不存在,即满足条件的三角形不存在.,6.设ABC的内角A,B,C所对边的长分别为a,b,c.若bc2a,3sinA5sinB,则C.,解析由3sinA5sinB及正弦定理,得3a5b.又因为bc2a,,1,2,3,4,5,6,2,题型分类深度剖析,PARTTWO,题型一利用正、余弦定理解三角形,师生共研,所以sin(2AB)sin2AcosBcos2AsinB,(2)设a2,c3,求b和sin(2AB)的值.,(1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下求解其余元素,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素;(2)正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.,跟踪训练1(1)在ABC中,角A,B,C的对边分别是a,b,c,已知bc,a22b2(1sinA),则A等于,解析在ABC中,由余弦定理得a2b2c22bccosA,bc,a22b2(1cosA),又a22b2(1sinA),cosAsinA,tanA1,A(0,),A,故选C.,题型二和三角形面积有关的问题,师生共研,例2(2016浙江)在ABC中,内角A,B,C所对的边分别为a,b,c.已知bc2acosB.(1)证明:A2B;,证明由正弦定理得sinBsinC2sinAcosB,故2sinAcosBsinBsin(AB)sinBsinAcosBcosAsinB,于是sinBsin(AB).又A,B(0,),故0AB0,所以a2b2c2或ab,故选D.,1.本例(2)中,若将条件变为a2b2c2ab,且2cosAsinBsinC,判断ABC的形状.,又由2cosAsinBsinC得sin(BA)0,AB,故ABC为等边三角形.,命题点2求解几何问题,(1)求sinABD的值;,解因为ADAB23,所以可设AD2k,,所以AD2,AB3,,命题点3解三角形的实际应用,例5(1)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75,30,此时气球的高AD是60m,则河流的宽度BC等于,解析如图,在RtACD中,CAD903060,AD60m,,在RtABD中,BAD907515,,22.6,解析因为小明在A处测得公路上B,C两点的俯角分别为30,45,所以BAD60,CAD45,设这辆汽车的速度为vm/s,则BC14v,,在ABC中,由余弦定理,得BC2AC2AB22ACABcosBAC,,(1)判断三角形形状的方法化边:通过因式分解、配方等得出边的相应关系.化角:通过三角恒等变换,得出内角的关系,此时要注意应用ABC这个结论.(2)求解几何计算问题要注意:根据已知的边角画出图形并在图中标示;选择在某个三角形中运用正弦定理或余弦定理.,(3)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.(4)三角函数模型的应用体现在两方面:一是已知函数模型求解数学问题;二是把实际问题抽象转化成数学问题,利用三角函数的有关知识解决问题.,2a2a2c2b2,a2b2c2,ABC为直角三角形.,(2)在平面四边形ABCD中,ABC75,BC2,则AB的取值范围是.,解析如图所示,延长BA与CD相交于点E,过点C作CFAD交AB于点F,则BFAB0,且当AB与圆C相切时,角A取得最大值,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,又因为ab,所以角A为锐角,所以角A的最大值为60,综上所述,角A的取值范围为0A60,故选A.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,同理可得BC.ABC的形状为等边三角形.故选A.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,所以ABC的外接圆面积为R29,故选C.,6.(2018浙东北联盟期中考试)在200m高的山顶上,测得山下一塔顶与塔底的俯角分别是30,60,则塔高为,解析设山顶为A,塔底为C,塔顶为D,过点A作CD的垂线,交CD的延长线于点B(图略),,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,8.(2019台州调研)为了测量A,C两点间的距离,选取同一平面上B,D两点,测出四边形ABCD各边的长度(单位:km)如图所示,且BD180,则AC的长为km.,7,解析在ABC中,由余弦定理得AC28252285cosB,在ACD中,由余弦定理得AC23252235cosD,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,10.(2018诸暨模拟)如图,已知ABC中,AB8,AC5,BC7,AB的中垂线交BC于点D,则BD,ADC的面积等于.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,7,8,9,10,11,12,13,14,15,16,11.(2018宁波模拟)在ABC中,内角A,B,C所对的边分别是a,b,c,已知3asinCccosA.(1)求sinA的值;,解因为3asinCccosA,所以3sinAsinCsinCcosA,,6,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,所以a3.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,(2)求AC边上的高.,技能提升练,13.在ABC中,a2b2c22absinC,则ABC的形状是A.不等腰的直角三角形B.等腰直角三角形C.钝角三角形D.正三角形,由于a2b22ab,当且仅当ab时取等号,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,14.已知ABC中,内角A,B,C的对边分别为a,b,c,若a2b2c2bc,a3,则ABC的周长的最大值为,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,拓展冲刺练,1,2,3,4,5,6,7,8,9

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论