




已阅读5页,还剩10页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.4.2抛物线的简单几何性质(1),一、温故知新,(一)圆锥曲线的统一定义,平面内,到定点F的距离与到定直线l的距离比为常数e的点的轨迹,当e1时,是双曲线.,当00),(3)开口向上,x2=2py(p0),(4)开口向下,x2=-2py(p0),(三)抛物线的标准方程,由抛物线y2=2px(p0),所以抛物线的范围为,二、探索新知,如何研究抛物线y2=2px(p0)的几何性质?,思考:y的范围呢?,即点(x,-y)也在抛物线上,故抛物线y2=2px(p0)关于x轴对称.,则(-y)2=2px,若点(x,y)在抛物线上,即满足y2=2px,,定义:抛物线与它的轴的交点叫做抛物线的顶点。,y2=2px(p0)中,令y=0,则x=0.,即:抛物线y2=2px(p0)的顶点(0,0).,抛物线上的点与焦点的距离和它到准线的距离之比,叫做抛物线的离心率。,由定义知,抛物线y2=2px(p0)的离心率为e=1.,F,A,B,y2=2px,2p,过焦点而垂直于对称轴的弦AB,称为抛物线的通径,,利用抛物线的顶点、通径的两个端点可较准确画出反映抛物线基本特征的草图.,|AB|=2p,2p越大,抛物线张口越大.,连接抛物线任意一点与焦点的线段叫做抛物线的焦半径。,|PF|=x0+p/2(同学们推另三种情况),焦半径公式:,F,归纳:(1)、抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但没有渐近线;(2)、抛物线只有一条对称轴,没有对称中心;(3)、抛物线只有一个顶点,一个焦点,一条准线;(4)、抛物线的离心率e是确定的为,、抛物线的通径为2P,2p越大,抛物线的张口越大.,因为抛物线关于x轴对称,它的顶点在坐标原点,并且经过点M(,),,解:,所以设方程为:,因此所求抛物线标准方程为:,例:已知抛物线关于x轴对称,它的顶点在坐标原点,并且经过点M(,),求它的标准方程.,三、典例精析,探照灯、汽车前灯的反光曲面,手电筒的反光镜面、太阳灶的镜面都是抛物镜面。,抛物镜面:抛物线绕其对称轴旋转而成的曲面。,灯泡放在抛物线的焦点位置上,通过镜面反射就变成了平行光束,这就是探照灯、汽车前灯、手电筒的设计原理。,平行光线射到抛物镜面上,经镜面反射后,反射光线都经过抛物线的焦点,这就是太阳灶能把光能转化为热能的理论依据。,例2:探照灯反射镜的轴截面是抛物线的一部分,光源位于抛物线的焦点处。已知灯口圆的直径为60cm,灯深40cm,求抛物线的标准方程和焦点位置。,(40,30),解:,设抛物线的标准方程为:y2=2px,由条件可得A(40,30),代入方程得:,302=2p40,解之:p=,故所求抛物线的标准方程为:y2=x,焦点为(,0),(1)已知点A(-2,3)与抛物线的焦点的距离是5,则P=。,(2)抛物线的弦AB垂直x轴,若|AB|=,则焦点到AB的距离为。,4,2,(3)已知直线x-y=2与抛物线交于A、B两点,那么线段AB的中点坐标是。,四、课堂练习,(4)求焦点在直线x-2y-4=0上的抛物线的标准方程.,(5)点A的坐标为(3,1),若P是抛物线上的一动点,F是抛物线的焦点,则|PA|+|PF|的最小值为()(A)3(B)4(C)5(D)6,B,五、归纳总结,抛物线只位于半个坐标平面内,虽然它也可以无限延伸,但没有渐近线;,抛物线只有一条对称轴,没有对称中心;,抛物线的离心率是确定的,e=;,抛物线只有一个顶点,一个焦点,一条准线;,抛物线的通径为2P,2p越大,抛物线的张口越大.,1、范围:,2、对称性:,3、顶点:,4、离心率
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 个人购房合同解除及终止条件
- 海运货物保险代理服务合同范本
- 专业遴选测试题及答案
- 边城课件课教学设计
- 幼儿园管理家园合作课件
- 消防安全服务培训班通知课件
- 2025至2030中国海藻酸锂行业项目调研及市场前景预测评估报告
- 2025年智能可穿戴设备无人机飞行安全监测技术创新解析
- 2025至2030中国工业真空阀行业项目调研及市场前景预测评估报告
- 2025至2030中国毛绒布料玩具行业发展趋势分析与未来投资战略咨询研究报告
- 2025年福州房地产市场分析报告
- 诗词格律培训课件
- 《大学生心理健康教育》课程教案
- 音乐感知:从听觉到绘画
- 急诊icu管理制度
- 无人机操控技术 教案 3.2无人机模拟器基本设置
- T/CSBME 078-2024掌上超声仪临床应用规范
- T/CEMIA 012-2018光纤激光器用掺镱光纤
- T/BECA 0005-2023建筑垃圾再生回填材料
- 老年医学人才培训汇报
- 线下佣金结算协议合同
评论
0/150
提交评论