




已阅读5页,还剩38页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
,3.3.2极大值与极小值,(5)对数函数的导数:,(4)指数函数的导数:,(3)三角函数:,(1)常函数:(C)/0,(c为常数);,(2)幂函数:(xn)/nxn1,1.基本初等函数的导数公式,知识回顾,2.导数的四则运算法则,(1)函数的和或差的导数(uv)/u/v/.,(3)函数的商的导数()/=(v0)。,(2)函数的积的导数(uv)/u/v+v/u.,(1)一般地,设函数y=f(x)在某个区间内可导,则函数在该区间如果f(x)0,如果f(x)0,求得其解集,再根据解集写出单调递增区间求解不等式f(x)0,f(x)=0,f(x)0,极大值,f(x)0,请问如何判断f(x0)是极大值或是极小值?,f(x)0,二、判断函数极值的方法,x2,左正右负为极大,左负右正为极小,探索:x=0是否为函数f(x)=x3的极值点?,可导函数导数为0的点一定是函数的极值点吗?,f(x)=3x2当f(x)=0时,x=0,而x=0不是该函数的极值点.,f(x0)=0 x0是可导函数f(x)的极值点,注意:f/(x0)=0是可导函数取得极值的必要不充分条件,探究,温馨提示,注意:函数极值是在某一点附近的小区间内定义的,是局部性质。因此一个函数在其整个定义区间上可能有多个极大值或极小值,并对同一个函数来说,在某一点的极大值也可能小于另一点的极小值。,例.判断下面4个命题,其中是真命题序号为。可导函数必有极值;函数在极值点必有定义;函数的极小值一定小于极大值(设极小值、极大值都存在);函数的极小值(或极大值)不会多于一个。,题型一、对函数极值的理解,练习1:下列结论中正确的是()。A、导数为零的点一定是极值点。B、如果在x0附近的左侧f(x)0,右侧f(x)0,那么f(x0)是极大值。、极大值一定大于极小值。,B,2、函数y=f(x)的导数y/与函数值和极值之间的关系为()A、导数y/由负变正,则函数y由减变为增,且有极大值B、导数y/由负变正,则函数y由增变为减,且有极大值C、导数y/由正变负,则函数y由增变为减,且有极小值D、导数y/由正变负,则函数y由增变为减,且有极大值,D,求可到函数极值的步骤:,题型二、求函数的极值,下面分两种情况讨论:(1)当,即x2,或x-2时;,(2)当,即-2x2时.,例2:求函数的极值.,解:,当x变化时,的变化情况如下表:,令,解得x=2,或x=-2.,例2:求函数的极值.,当x=-2时,f(x)的极大值为,当x=2时,f(x)的极小值为,求可导函数f(x)极值的步骤:,如果左负右正(-+),那么f(x)在这个根处取得极小值;,(1)确定函数的定义域;,(最好通过列表法),(2)求导数;,(3)求方程的根;,检查在方程根左右的符号来判断f(x)在这个根处取极值的情况如果左正右负(+-),那么f(x)在这个根处取得极大值;,(4)把定义域按方程的根依次划分为若干个区间,并列成表格,巩固练习:,求函数的极值,当时,有极大值,并且极大值为,当时,有极小值,并且极小值为,解:令,得,或下面分两种情况讨论:(1)当,即时;(2)当,即,或时。当变化时,的变化情况如下表:,例3求函数y=(x2-1)3+1的极值。,解:定义域为R,y=6x(x2-1)2。,由y=0可得x1=-1,x2=0,x3=1,当x变化时,y,y的变化情况如下表:,因此,当x=0时,y极小值=0,点评:一点是极值点的充分条件是这点两侧的导数异号。,题型三、由函数的极值求参数的范围,例4:已知函数在处取得极值。(1)求函数的解析式(2)求函数的单调区间,解:(1)在取得极值,即解得(2),由得的单调增区间为由得的单调减区间为,函数在时有极值10,则a,b的值为()A、或B、或C、D、以上都不对,C,,,注意:f/(x0)=0是函数取得极值的必要不充分条件,注意代入检验,随堂练习,例3,例3,A,注意:数形结合以及原函数与导函数图像的区别,随堂练习,.,略解:,(1)由图像可知:,(2),注意:数形结合以及函数与方程思想的应用,随堂练习,1、求函数的极值,解因为,令,得,列表讨论,所以,函数有极大值,有极小值。,一阶导数由正到负,函数过极大值;一阶导数由负到正,函数过极小值。,作业,a=2.,分析:f(x)在处有极值,根据一点是极值点的必要条件可知,可求出a的值.,解:,,,4:函数在处具有极值,求a的值,5:y=alnx+bx2+x在x=1和x=2处有极值,求a、b的值,解:,因为在x=1和x=2处,导数为0,暂停,课堂小结,(1)确定函数的定义域(2)求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年甘肃庆阳西峰数字服务就业中心招聘100人考前自测高频考点模拟试题及答案详解一套
- 2025北京邮电大学人工智能学院招聘1人(人才派遣)考前自测高频考点模拟试题及一套完整答案详解
- 公司租赁经营用房合同5篇
- 2024-2025学年河北省霸州市小学数学一年级期末通关提分题详细答案和解析
- 泗阳保安考试题库及答案
- 筑安全考试题库及答案
- 房产知识考试题库及答案
- 安全意识考试题库及答案
- 农业科技服务与项目承包合同
- 职教高考机械理论考试题及答案
- 部编人教版五年级上册道德与法治全册课件
- 高血压护理查房ppt
- 全关节镜下FiberTape治疗后交叉韧带胫骨止点撕脱骨折课件
- 有限元和有限差分法基础超详细版本
- 《临建布置方案》word版
- epsonlq590面板操作
- GB∕T 11416-2021 日用保温容器
- 疑似预防接种异常反应(AEFI)监测与处理PPT课件
- 存货计划成本法
- 某某某污水处理厂施工组织设计
- (完整)地面硬化施工合同
评论
0/150
提交评论