三年高考(2019)高考数学试题分项版解析-专题17-椭圆-文(含解析).doc_第1页
三年高考(2019)高考数学试题分项版解析-专题17-椭圆-文(含解析).doc_第2页
三年高考(2019)高考数学试题分项版解析-专题17-椭圆-文(含解析).doc_第3页
三年高考(2019)高考数学试题分项版解析-专题17-椭圆-文(含解析).doc_第4页
三年高考(2019)高考数学试题分项版解析-专题17-椭圆-文(含解析).doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题17 椭圆 文考纲解读明方向考纲解读考点内容解读要求常考题型预测热度1.椭圆的定义及其标准方程掌握椭圆的定义、几何图形、标准方程及简单性质掌握选择题解答题2.椭圆的几何性质掌握填空题解答题3.直线与椭圆的位置关系掌握解答题分析解读1.能够熟练使用直接法、待定系数法、定义法求椭圆方程.2.能熟练运用几何性质(如范围、对称性、顶点、离心率)解决相关问题.3.能够把直线与椭圆的位置关系的问题转化为方程组解的问题,判断位置关系及解决相关问题.4.本节在高考中以求椭圆的方程、椭圆的性质以及直线与椭圆的位置关系为主,与向量等知识的综合起来考查的命题趋势较强,分值约为12分,难度较大.2018年高考全景展示1【2018年全国卷II文】已知,是椭圆的两个焦点,是上的一点,若,且,则的离心率为A. B. C. D. 【答案】D【解析】分析:设,则根据平面几何知识可求,再结合椭圆定义可求离心率.点睛:椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义.2【2018年浙江卷】已知点P(0,1),椭圆+y2=m(m1)上两点A,B满足=2,则当m=_时,点B横坐标的绝对值最大【答案】5【解析】分析:先根据条件得到A,B坐标间的关系,代入椭圆方程解得B的纵坐标,即得B的横坐标关于m的函数关系,最后根据二次函数性质确定最值取法.点睛:解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.3【2018年天津卷文】设椭圆 的右顶点为A,上顶点为B.已知椭圆的离心率为,.(I)求椭圆的方程;(II)设直线与椭圆交于两点,与直线交于点M,且点P,M均在第四象限.若的面积是面积的2倍,求k的值.【答案】();().【解析】分析:(I)由题意结合几何关系可求得.则椭圆的方程为.(II)设点P的坐标为,点M的坐标为 ,由题意可得.易知直线的方程为,由方程组可得.由方程组可得.结合,可得,或.经检验的值为.详解:(I)设椭圆的焦距为2c,由已知得,又由,可得由,从而所以,椭圆的方程为点睛:解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题4【2018年文北京卷】已知椭圆的离心率为,焦距为.斜率为k的直线l与椭圆M有两个不同的交点A,B.()求椭圆M的方程; ()若,求 的最大值;()设,直线PA与椭圆M的另一个交点为C,直线PB与椭圆M的另一个交点为D.若C,D和点 共线,求k.【答案】()()()【解析】分析:(1)根据题干可得的方程组,求解的值,代入可得椭圆方程;(2)设直线方程为,联立,消整理得,利用根与系数关系及弦长公式表示出,求其最值;(3)联立直线与椭圆方程,根据韦达定理写出两根关系,结合三点共线,利用共线向量基本定理得出等量关系,可求斜率.详解:()由题意得,所以,又,所以,所以,所以椭圆的标准方程为()设直线的方程为,由消去可得,则,即,设,则,则,易得当时,故的最大值为点睛:本题主要考查椭圆与直线的位置关系,第一问只要找到三者之间的关系即可求解;第二问主要考查学生对于韦达定理及弦长公式的运用,可将弦长公式变形为,再将根与系数关系代入求解;第三问考查椭圆与向量的综合知识,关键在于能够将三点共线转化为向量关系,再利用共线向量基本定理建立等量关系求解.2017年高考全景展示1.【2017浙江,2】椭圆的离心率是ABCD【答案】B【解析】试题分析:,选B【考点】 椭圆的简单几何性质【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等2.【2017课标1,文12】设A、B是椭圆C:长轴的两个端点,若C上存在点M满足AMB=120,则m的取值范围是ABCD【答案】A【解析】【考点】椭圆【名师点睛】本题设置的是一道以椭圆的知识为背景的求参数范围的问题解答问题的关键是利用条件确定的关系,求解时充分借助题设条件转化为,这是简化本题求解过程的一个重要措施,同时本题需要对方程中的焦点位置进行逐一讨论3.【2017课标3,文11】已知椭圆C:,(ab0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为( )A B CD【答案】A【解析】以线段为直径的圆是,直线与圆相切,所以圆心到直线的距离,整理为,即,即 ,故选A. 【考点】椭圆离心率【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4.【2017课标II,文20】设O为坐标原点,动点M在椭圆C 上,过M作x轴的垂线,垂足为N,点P满足(1)求点P的轨迹方程;(2)设点在直线上,且.证明过点P且垂直于OQ的直线 过C的左焦点F. 【答案】(1)(2)见解析【解析】试题分析:(1)转移法求轨迹:设所求动点坐标及相应已知动点坐标,利用条件列两种坐标关系,最后代入已知动点轨迹方程,化简可得所求轨迹方程,(2)证明直线过定点问题,一般方法以算代证:即证,先设 P(m,n),则需证,根据条件可得,而,代入即得.(2)由题意知F(-1,0),设Q(-3,t),P(m,n),则,.由得,又由(1)知,故.所以,即.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F【考点】求轨迹方程,直线与椭圆位置关系【名师点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.5.【2017北京,文19】已知椭圆C的两个顶点分别为A(2,0),B(2,0),焦点在x轴上,离心率为()求椭圆C的方程;()点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:BDE与BDN的面积之比为4:5【答案】() ;()详见解析.【解析】试题分析:()根据条件可知,以及 ,求得椭圆方程;()设,则,根据条件求直线的方程,并且表示直线的方程,并求两条直线的交点,根据 ,根据坐标表示面积比值.()设,则.由题设知,且.直线的斜率,故直线的斜率.所以直线的方程为.【考点】1.椭圆方程;2.直线与椭圆的位置关系.【名师点睛】本题对考生计算能力要求较高,重点考察了计算能力,以及转化与化归的能力,解答此类题目,利用的关系,确定椭圆方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,一般都是根据根与系数的关系解题,但本题需求解交点坐标,再根据面积的几何关系,从而求解面积比值,计算结果,本题易错点是复杂式子的变形能力不足,导致错漏百出.本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.6.【2017江苏,17】 如图,在平面直角坐标系中,椭圆的左、右焦点分别为, ,离心率为,两准线之间的距离为8.点在椭圆上,且位于第一象限,过点作 直线的垂线,过点作直线的垂线.(1)求椭圆的标准方程;(2)若直线的交点在椭圆上,求点的坐标.【答案】(1)(2)【解析】解:(1)设椭圆的半焦距为c. 因为椭圆E的离心率为,两准线之间的距离为8,所以, 解得,于是, 因此椭圆E的标准方程是. 由,解得,所以.因为点在椭圆上,由对称性,得,即或.又在椭圆E上,故.由,解得;,无解.因此点P的坐标为.【考点】椭圆方程,直线与椭圆位置关系【名师点睛】直线和圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用韦达定理或求根公式进行转化,要充分利用椭圆和双曲线的几何性质、点在曲线上则点的坐标满足曲线方程.2016年高考全景展示1.【2016高考新课标1文数】直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的,则该椭圆的离心率为( )(A) (B) (C) (D)【答案】B考点:椭圆的几何性质【名师点睛】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a,c的齐次方程,方程两边同时除以a的最高次幂,转化为关于e的方程,解方程求e .2.2016高考新课标文数已知为坐标原点,是椭圆:的左焦点,分别为的左,右顶点.为上一点,且轴.过点的直线与线段交于点,与轴交于点.若直线经过的中点,则的离心率为( )(A)(B)(C)(D)【答案】A【解析】考点:椭圆方程与几何性质【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得的值,进而求得的值;(2)建立的齐次等式,求得或转化为关于的等式求解;(3)通过特殊值或特殊位置,求出3.【2016高考新课标2文数】已知是椭圆:的左顶点,斜率为的直线交与,两点,点在上,.()当时,求的面积;()当时,证明:.【答案】();().【解析】试题分析:()先求直线的方程,再求点的纵坐标,最后求的面积;()设,将直线的方程与椭圆方程组成方程组,消去,用表示,从而表示,同理用表示,再由求. 试题解析:()设,则由题意知.由已知及椭圆的对称性知,直线的倾斜角为,又,因此直线的方程为.将代入得,解得或,所以.因此的面积.考点:椭圆的性质,直线与椭圆的位置关系. 【名师点睛】本题中,分离变量,得,解不等式,即求得实数的取值范围.4.【2016高考北京文数】(本小题14分)已知椭圆C:过点A(2,0),B(0,1)两点.(I)求椭圆C的方程及离心率;()设P为第三象限内一点且在椭圆C上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.【答案】();()见解析.【解析】试题分析:()根据两顶点坐标可知a,b的值,则亦知椭圆方程,根据椭圆性质及离心率公式求解;()四边形的面积等于对角线乘积的一半,分别求出对角线的值求乘积为定值即可.试题解析:(I)由题意得,所以椭圆的方程为又,所以离心率 令,得,从而所以四边形的面积从而四边形的面积为定值考点:椭圆方程,直线和椭圆的关系,运算求解能力.【名师点睛】解决定值定点方法一般有两种:(1)从特殊入手,求出定点、定值、定线,再证明定点、定值、定线与变量无关;(2)直接计算、推理,并在计算、推理的过程中消去变量,从而得到定点、定值、定线.应注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算. 日月崇拜是原始宗教的重要内容之一,中国古代很早就有祭祀日月的宗教礼俗。殷人将日月称东母与西母,周代依据日月的时间属性行朝日夕月的祭礼,“夕月”即秋分日的晚上在西门外祭月。春秋战国时,日月神被称为东皇公、西王母。沂南汉画像石中东王公、西王母分坐在柱收物(昆仑山)上,西王母两旁跪有捣药的玉兔,由此可知,晋代郭璞图赞中“昆仑月精”的说法言之有据,而后世的月神嫦娥即由西王母演变而来。秦汉时期日月祭祀仍为皇家礼制,此后直至明清历代都有秋分祭月的礼仪。上古时期祭月列入皇家祀典而例行祭祀后,民间缺少了祭月的消息,这可能与古代社会的神权控制有关,像日月这样的代表阴阳的天地大神,只有皇家才能与之沟通,一般百姓无缘祭享。隋唐以后,随着天文知识的丰富与文化观念的进步,人们对月亮有了较理性的认识,月亮的神圣色彩明显消褪。这时皇家也逐渐失去了对月神祭祀的独占权。对一般平民来说,月亮不再是那样“高不可及”。唐朝虽没有中秋节,但唐人精神浪漫,亲近自然,中秋赏月已成为文人的时尚,吟咏中秋明月的华章丽句寻常可见,如许浑鹤林寺中秋夜玩月云:“中秋云尽出沧海,半夜露寒当碧天。轮彩渐移金殿外,镜光犹挂玉楼前。”在宋代,中秋节已成为民俗节日。文人沿袭赏月古风,但其情趣大异于唐人。唐人大多由月亮的清辉联想到河山的壮美,友朋千里,邀赏明月,诗酒风流,如白居易八月十五日夜禁中独直,对月忆元九“三五夜中新月色,二千里外故人心”,就借秋月抒发了感物怀人的情思。宋人常以月之阴晴圆缺,喻人生变化无常,苏轼中秋月“暮云收尽溢清寒,银汉无声转玉盘。此生此夜不长好,明月明年何处看”就寄托着这种浩叹。似乎中秋明月的清光,也难掩宋人的感伤。不过对于宋人来说,中秋还有另一种形态,即世俗的欢愉。北宋东京中秋夜,“贵家结饰台榭,民间争占酒楼玩月”(东京梦华录)。南宋杭州中秋夜更是热闹,在银蟾光满之时,王孙公子、富家巨室,莫不登楼,临轩玩月,酌酒高歌;中小商户也登上小小月台,安排家宴,“团圆子女,以酬佳节”(梦梁录);市井贫民“解衣市酒,勉强迎欢,不肯虚度”。团圆是中秋节俗的中心意义。宋人的团圆意识已与中秋节令发生关联,宋代城市居民阖家共赏圆月,就体现了这一伦理因素。明清时期,由于理学的浸染,民间社会乡族观念增强,人们对家庭更为依恋,中秋节正是加强亲族联系的良机。“中秋民间以月饼相连,取团圆之义”(明代田汝成西湖游览志奈),月饼在宋代已经出现,但以月饼为中秋特色食品及祭月供品的风俗大概始于明朝,小小的月饼在民间生活中作为团圆的象征与联系亲族情感的信物互相馈送。节日是日常生活的亮点,节俗文化是时代精神的聚焦。中秋经历了文人赏月的雅趣,民间拜月的情趣,以及有心吃月饼而无心看月的俗趣,节俗形态从古至今发生了重大变化。一部中秋节俗形态演变史,也是一部中国民众心态的变迁史。(摘编自萧放团圆饼与月亮节中秋节俗形态的变迁)1下列关于原文内容的表述,不正确的一项是( )A对于日月,殷人称东母与西母,春秋战国时称东皇公、西王母,汉代称东王公、西王母,从这些称呼可以看出,中国古人的日月崇拜有一脉相承之处。B唐宋两代都有文人赏月的风尚。唐人多借月表达对自然美景的欣赏赞美,体现出诗酒风流的情趣,而宋人常因月抒发感伤之情。C南宋时的都城杭州,中秋夜热闹非凡,不仅富家巨室、中小商户宴饮赏玩,“以酬佳节”,连财力匮乏的市井贫民也勉力寻欢,足见中秋在当时已是非常重要的节日。D中秋的节俗文化经历了不断丰富与演变的过程,如宋人赋予中秋节阖家团圆的意义,明人则将月饼引入中秋节,作为团圆的象征与联系亲族感情的信物。2下列理解和分析,不符合原文意思的一项是( )A弦、望、晦、朔是月亮在运行过程中被人观察到的不同形态,是中国大多数节日设定的基准,如中秋节的设定就与“望”有关。B中秋节源于原始宗教中的月亮崇拜,但形成较晚。唐代文人已有中秋之夜赏月的风尚,到宋代,中秋则成为重要的民俗节日。C沂南汉画像石中的西王母为月神,居于昆仑山,后演变为月神嫦娥。晋代郭璞图赞中“昆仑月精”的说法即以此神话为依据。D唐朝的一般民众将月亮视为欣赏的对象,而不再觉得它高不可及,这跟天文知识的丰富、文化观念的进步和皇家丧失对祭月的独占权大有关系,3根据原文内容,下列说法不正确的一项是( )A月为天地大神,在宗教祭祀中地位重要,上古时期统治者独占祭月权之后,直至隋唐以前,一般民众无权祭月,中国民间也没有祭月的风俗。B尽管唐宋文人赏月的情趣大异,但白居易八月十五日夜禁中独直,对月忆元九和苏轼中秋月都是借月抒怀的感伤之作,表达了对友人的思念之情。C在宋代,中秋已是团圆佳节,到明清时期,理学的影响增强了民间社会的乡族观念和人们对家庭的依恋,于是中秋节更成为共享天伦与联系亲族的良机。D中秋节俗形态丰富,从文人雅士赏玩明月,到民间阖家团圆共赏明月,再到以月饼相赠加强亲族联系,这些习俗的演变折射了时代精神的变迁。(二)文学类文本阅读(14分)阅读下面的文字,完成4-6题。百年震柳梁衡1920年12月16日,宁夏海原县发生了一场全球最大的地震。是日晚8时,风暴大起,四野尘霾,大地颤动,山移、地裂、河断、城陷。黄土高原经这一抖,如骨牌倒地,土块横飞。老百姓惊呼:“山走了!”有整座山滑行三四公里者,最大滑坡面积竟毗连三县,达两千平方公里。山一倒就瞬间塞河成湖,形成无数的大小“海子”。地震中心原有一大盐湖,为西北重要的产盐之地。湖底突然鼓起一道滚动的陡坎,如有人在湖下推行,竟滴水不漏地将整个湖面向北移了一公里,称之为“滚湖”。所有的地标都被扭曲、翻腾得面目全非。大地瞬间裂开一条237公里长的大缝,横贯甘肃、陕西、宁夏。裂缝如闪电过野,利刃破竹,见山裂山,见水断水,将城池村庄一劈两半,庄禾田畴被撕为碎片。当这条闪电穿过海原县的一条山谷时,谷中正有一片旺盛的柳树,它照样噼噼啪啪,一路撕了下去。但是没有想到,这些柔枝弱柳,虽被摇得东倒西歪,断枝拔根,却没有气绝身死。狂震之后,有一棵虽被撕为两半,但又挺起身子,顽强地活了下来,至今仍屹立在空谷之中,这就是那棵有名的震柳。 我不知道这株柳,该称它是一棵还是两棵。它同根,同干,同样的树纹,头上还枝叶连理。但地震已经将它从下一撕为二,现在两个半边树中间可穿行一人,而每一半也都有合抱之粗了。人老看脸,树老看皮。经过百年岁月的煎熬,这树皮已如老人的皮肤,粗糙,多皱,青筋暴突。纹路之宽可容进一指,东奔西突,似去又回,一如黄土高原上的千沟万壑。这棵树已经有500年,就是说地震之时它已是400岁的高龄,而大难后至今又过了100岁。 看过树皮,再看树

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论