




已阅读5页,还剩36页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
9.7抛物线,知识梳理,考点自诊,1.抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)的的点的轨迹叫做抛物线.点F叫做抛物线的,直线l叫做抛物线的.2.抛物线的标准方程(1)顶点在坐标原点,焦点在x轴正半轴上的抛物线的标准方程为;(2)顶点在坐标原点,焦点在x轴负半轴上的抛物线的标准方程为;(3)顶点在坐标原点,焦点在y轴正半轴上的抛物线的标准方程为;(4)顶点在坐标原点,焦点在y轴负半轴上的抛物线的标准方程为.,距离相等,焦点,准线,y2=2px(p0),y2=-2px(p0),x2=2py(p0),x2=-2py(p0),知识梳理,考点自诊,2.抛物线的标准方程和几何性质,(0,0),y=0,x=0,1,知识梳理,考点自诊,知识梳理,考点自诊,1.设AB是过抛物线y2=2px(p0)焦点F的弦,若A(x1,y1),B(x2,y2),如图所示,则,知识梳理,考点自诊,1.判断下列结论是否正确,正确的画“”,错误的画“”.(1)平面内与一个定点F和一条定直线l的距离相等的点的轨迹一定是抛物线.()(2)若直线与抛物线只有一个交点,则直线与抛物线一定相切.()(3)若一抛物线过点P(-2,3),则其标准方程可写为y2=2px(p0).()(4)抛物线既是中心对称图形,又是轴对称图形.()(5)方程y=ax2(a0)表示的曲线是焦点在x轴上的抛物线,且其焦点坐标是.(),知识梳理,考点自诊,C,2.(2018辽宁沈阳八模,3)已知抛物线的焦点在x轴负半轴上,若p=2,则其标准方程为()A.y2=-2xB.x2=-2yC.y2=-4xD.x2=-4y,解析:因为抛物线的焦点在x轴负半轴上,所以抛物线开口向左,所以抛物线的标准方程是y2=-2px,又p=2,所以抛物线方程为y2=-4x,故选C.,3.M是抛物线C:y2=2px(p0)上一点,F是抛物线C的焦点,O为坐标原点,若|MF|=p,K是抛物线C的准线与x轴的交点,则MKO=()A.15B.30C.45D.60,C,知识梳理,考点自诊,4.(2018江西南昌测试三,13)若抛物线x2=8y上的点P到焦点的距离为12,则点P到x轴的距离是.,10,解析:因为抛物线方程为x2=8y,所以其焦点坐标为(0,2),准线方程为y=-2.因为点P到焦点的距离为12,所以点P到准线的距离也为12.所以点P到x轴的距离为10.,5.设F为抛物线C:y2=3x的焦点,过F且倾斜角为30的直线交抛物线C于A,B两点,O为坐标原点,则AOB的面积为.,考点1,考点2,考点3,考点4,考点5,C,抛物线的定义及其应用例1(1)过抛物线y2=4x的焦点F的直线交该抛物线于A,B两点,O为坐标原点.若|AF|=3,则AOB的面积为(),(2)(2018北京朝阳一模,5)已知F为抛物线E:y2=4x的焦点,过点F的直线l交抛物线E于A,B两点,若|AB|=8,则线段AB的中点M到直线x+1=0的距离为()A.2B.4C.8D.16,B,考点1,考点2,考点3,考点4,考点5,考点1,考点2,考点3,考点4,考点5,思考如何灵活应用抛物线的定义解决距离问题?解题心得1.由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.2.注意灵活运用抛物线上一点P(x,y)到焦点F的距离,考点1,考点2,考点3,考点4,考点5,对点训练1(1)(2018福建厦门质检二,6)已知拋物线C:y2=4x的焦点为F,过F的直线与曲线C交于A,B两点,|AB|=6,则AB中点到y轴的距离是()A.1B.2C.3D.4,B,C,考点1,考点2,考点3,考点4,考点5,解析:(1)由抛物线C的方程为y2=4x,得F(1,0),设A(x1,y1),B(x2,y2),|AF|等于点A到准线x=-1的距离x1+1,同理,|BF|等于B到准线x=-1的距离x2+1,|AB|=|AF|+|BF|=(x1+1)+(x2+1)=6,x1+x2=4,考点1,考点2,考点3,考点4,考点5,抛物线的方程及几何性质例2(1)(2018四川南充三诊,15)已知斜率为2的直线l过抛物线y2=ax的焦点F,且与y轴相交于点A,若OAF(O为坐标原点)的面积为4,则a=.(2)(2018湖北黄冈中学三模,5)已知点P(-1,4),过点P恰存在两条直线与抛物线C有且只有一个公共点,则抛物线C的标准方程为(),8,D,考点1,考点2,考点3,考点4,考点5,(2)过点P恰存在两条直线与抛物线C有且只有一个公共点,P一定在抛物线C上,若抛物线焦点在x轴上,设抛物线方程为y2=2px,将P(-1,4)代入方程可得2p=-16,故抛物线C的标准方程为y2=-16x;若抛物线焦点在y轴上,设抛物线方程为x2=2py,考点1,考点2,考点3,考点4,考点5,思考求抛物线标准方程的常用方法和关键是什么?解题心得1.求抛物线的标准方程主要利用待定系数法,因为抛物线方程有四种形式,所以在求抛物线方程时,需先定位,再定量,必要时要进行分类讨论.标准方程有时可设为y2=mx或x2=my(m0).2.抛物线几何性质的确定,由抛物线的方程可以确定抛物线的开口方向、焦点位置、焦点到准线的距离,从而进一步确定抛物线的焦点坐标及准线方程.,考点1,考点2,考点3,考点4,考点5,对点训练2(1)直线l过抛物线x2=2py(p0)的焦点,且与抛物线交于A,B两点,若线段AB的长是6,AB的中点到x轴的距离是1,则此抛物线方程是()A.x2=12yB.x2=8yC.x2=6yD.x2=4y(2)(2018河北衡水中学押题卷四,6)抛物线E:y2=2px(p0)的焦点为F,点A(0,2),若线段AF的中点B在抛物线上,则|BF|=(),B,D,考点1,考点2,考点3,考点4,考点5,考点1,考点2,考点3,考点4,考点5,与抛物线相关的最值问题例3(1)(2018青海西宁二模,11)抛物线y2=4x的焦点为F,点A(5,3),M为抛物线上一点,且M不在直线AF上,则MAF周长的最小值为()A.B.12C.11D.10(2)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为()A.16B.14C.12D.10,A,C,考点1,考点2,考点3,考点4,考点5,解析:(1)求MAF周长的最小值,即求|MA|+|MF|的最小值,设点M在准线上的射影为D,根据抛物线的定义,可知|MF|=|MD|,因此,|MA|+|MF|的最小值,即为|MA|+|MD|的最小值,根据平面几何知识,可得当D,M,A三点共线时|MA|+|MD|最小,因此最小值为xA-(-1)=5+1=6,因为,所以MAF周长的最小值为11,故选C.,考点1,考点2,考点3,考点4,考点5,考点1,考点2,考点3,考点4,考点5,考点1,考点2,考点3,考点4,考点5,思考求与抛物线有关的最值问题的一般思路是怎样的?解题心得与抛物线有关的最值问题的两个转化策略转化策略一:将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得以解决.转化策略二:将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决.,考点1,考点2,考点3,考点4,考点5,D,C,考点1,考点2,考点3,考点4,考点5,解析:(1)过点M作抛物线y2=2x左准线的垂线,垂足是N(图略),则|MF|+|MA|=|MN|+|MA|,当A,M,N三点共线时,|MF|+|MA|取得最小值,此时点M的坐标为(2,2).(2)抛物线y2=4x的焦点为F(1,0),圆x2+(y-4)2=1的圆心为E(0,4),半径为1,根据抛物线的定义可知点P到准线的距离等于点P到焦点的距离,进而推断出当P,Q,F三点共线时P到点Q的距离与点P到直线x=-1距离之和的最小值为故选C.,考点1,考点2,考点3,考点4,考点5,例4(1)设抛物线y2=4x的焦点为F,准线为l,已知点C在l上,以C为圆心的圆与y轴的正半轴相切于点A,若FAC=120,则圆的方程为.(2)(2018河北唐山三模)已知P是抛物线y2=4x上任意一点,Q是圆(x-4)2+y2=1上任意一点,则|PQ|的最小值为(),抛物线与其他圆锥曲线的综合,D,考点1,考点2,考点3,考点4,考点5,解析:(1)抛物线y2=4x的焦点F(1,0),准线l的方程为x=-1,由题意可设圆C的方程为(x+1)2+(y-b)2=1(b0),则C(-1,b),A(0,b).FAC=120,考点1,考点2,考点3,考点4,考点5,思考求解抛物线与其他圆锥曲线的小综合问题要注意什么?解题心得求解抛物线与其他圆锥曲线的小综合问题,要注意距离的转换,将抛物线上的点到焦点的距离转换成抛物线上的点到准线的距离,这样可以简化运算过程.,考点1,考点2,考点3,考点4,考点5,A,D,考点1,考点2,考点3,考点4,考点5,解析:(1)根据题意,四边形MNPQ为矩形,可得PQ=MN,从而得到圆心F到准线的距离与到MN的距离相等,所以M点的横坐标为3,代入抛物线方程,考点1,考点2,考点3,考点4,考点5,考点1,考点2,考点3,考点4,考点5,直线与抛物线的关系,例5(2019广东江门高三调研,20)过抛物线E:y2=4x的焦点F的直线交抛物线E于两点P1,P2,线段P1P2的中点为P.(1)求动点P的轨迹的方程;(2)经过坐标原点O的直线l与轨迹交于A,B两点,与抛物线E交于不同于原点的点C,若|OC|=6|AB|,求直线l的方程.,考点1,考点2,考点3,考点4,考点5,考点1,考点2,考点3,考点4,考点5,考点1,考点2,考点3,考点4,考点5,考点1,考点2,考点3,考点4,考点5,思考求解抛物线综合问题的一般方法是怎样的?解题心得求解抛物线综合问题的方法(1)研究直线与抛物线的位置关系与研究直线与椭圆、双曲线的位置关系的方法类似,一般是用方程法,但涉及抛物线的弦长、中点、距离等问题时,要注意“设而不求”“整体代入”“点差法”以及定义的灵活应用.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p(焦点在x轴正半轴),若不过焦点,则必须用弦长公式.,考点1,考点2,考点3,考点4,考点5,对点训练5(2018江苏南京三模,25)在平面直角坐标系xOy中,抛物线C:y2=2px(p0)的焦点为F,点A(1,a)(a0)是抛物线C上一点,且AF=2.(1)求p的值;(2)若M,N为抛物线C上异于A的两点,且AMAN.记点M,N到直线y=-2的距离分别为d1,d2,求d1d2的值.,考点1,考点2,考点3,考点4,考点5,考点1,考点2,考点3,考点4,考点5,1.认真区分四种形式的标准方程:(1)区分y=ax2与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年艺术生联考专项考试试卷及答案重点
- 2025年心理学入门知识测试题及答案
- 2025年甘肃省中考语文试卷真题(含标准答案)
- 2025年舞蹈艺术与表演技巧期末考试试题及答案
- 2025年无人机技术应用与管理考试试卷及答案
- 2025年数字媒体艺术专业考试试卷及答案
- 2025年农村经济与管理考试试卷及答案
- 2025年编程语言与软件开发能力评估试题及答案
- 2025年电气工程及其自动化专业考试试卷及答案
- 2025年甘肃省武威市民勤县收成镇选聘专业化管理村文书笔试参考题库及答案详解一套
- 山东电动伸缩雨棚施工方案
- 新媒体营销技术与应用PPT完整全套教学课件
- 第5章红外教学课件
- 卡氏肺孢子虫肺炎
- 大足县某水库除险加固工程施工组织设计
- 基于单片机数字电压表电路设计外文文献原稿和译文
- JJG 1149-2022电动汽车非车载充电机(试行)
- 2023版浙江评审卫生高级专业技术资格医学卫生刊物名录
- GB/T 1689-1998硫化橡胶耐磨性能的测定(用阿克隆磨耗机)
- GB/T 16823.3-2010紧固件扭矩-夹紧力试验
- 江苏省金陵中学2023学年物理高一下期末调研试题(含答案解析)
评论
0/150
提交评论