高考数学大二轮总复习与增分策略 专题二 函数与导数 第4讲 导数的热点问题课件 文.ppt_第1页
高考数学大二轮总复习与增分策略 专题二 函数与导数 第4讲 导数的热点问题课件 文.ppt_第2页
高考数学大二轮总复习与增分策略 专题二 函数与导数 第4讲 导数的热点问题课件 文.ppt_第3页
高考数学大二轮总复习与增分策略 专题二 函数与导数 第4讲 导数的热点问题课件 文.ppt_第4页
高考数学大二轮总复习与增分策略 专题二 函数与导数 第4讲 导数的热点问题课件 文.ppt_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第4讲导数的热点问题,专题二函数与导数,栏目索引,(2016课标全国乙)已知函数f(x)(x2)exa(x1)2有两个零点(1)求a的取值范围;,高考真题体验,解析答案,解f(x)(x1)ex2a(x1)(x1)(ex2a)设a0,则f(x)(x2)ex,f(x)只有一个零点设a0,则当x(,1)时,f(x)0,所以f(x)在(,1)上单调递减,在(1,)上单调递增,故f(x)存在两个零点,解析答案,设a0,由f(x)0得x1或xln(2a),又当x1时,f(x)0,所以f(x)不存在两个零点,又当x1时,f(x)0,所以f(x)不存在两个零点综上,a的取值范围为(0,),(2)设x1,x2是f(x)的两个零点,证明:x1x22.,证明不妨设x1f(2x2),即f(2x2)1时,g(x)1时,g(x)0,从而g(x2)f(2x2)kx对任意的x(0,)恒成立等价于对任意的x(0,)恒成立,思维升华,由(2)可知,当x(0,)时,exx10恒成立,令(x)0,得x1;令(x)0,得0x1.y(x)的单调增区间为(1,),单调减区间为(0,1),(x)min(1)e2,k(x)mine2,实数k的取值范围为(,e2),用导数证明不等式的方法(1)利用单调性:若f(x)在a,b上是增函数,则xa,b,则f(a)f(x)f(b),对x1,x2a,b,且x1x2,则f(x1)f(x2)对于减函数有类似结论(2)利用最值:若f(x)在某个范围D内有最大值M(或最小值m),则对xD,则f(x)M(或f(x)m)(3)证明f(x)0,所以(x)在(1,)上单调递增,故(x)在x1处取到极小值也是最小值,故(x)(1)0,,解析答案,(2)在区间(1,e)上f(x)x恒成立,求实数a的取值范围,故h(x)在区间(1,e)上单调递增,所以h(x)h(1)0.因为h(x)0,所以g(x)0,即g(x)在区间(1,e)上单调递增,,热点二利用导数讨论方程根的个数方程的根、函数的零点、函数图象与x轴的交点的横坐标是三个等价的概念,解决这类问题可以通过函数的单调性、极值与最值,画出函数图象的走势,通过数形结合思想直观求解,解析答案,例2已知函数f(x)(ax2x1)ex,其中e是自然对数的底数,aR.(1)若a1,求曲线yf(x)在点(1,f(1)处的切线方程;,解当a1时,f(x)(x2x1)ex,所以f(x)(x2x1)ex(2x1)ex(x23x)ex,所以曲线yf(x)在点(1,f(1)处的切线斜率为kf(1)4e.又因为f(1)e,所以所求切线的方程为ye4e(x1),即4exy3e0.,思维升华,解析答案,解当a1时,f(x)(x2x1)ex,f(x)(x2x)ex,所以yf(x)在(,1)上单调递减,在(1,0)上单调递增,在(0,)上单调递减,,解析答案,思维升华,思维升华,因为函数yf(x)与yg(x)的图象有3个不同的交点,所以f(1)g(0),,(1)函数yf(x)k的零点问题,可转化为函数yf(x)和直线yk的交点问题(2)研究函数yf(x)的值域,不仅要看最值,而且要观察随x值的变化y值的变化趋势,思维升华,跟踪演练2已知函数f(x)2lnxx2ax(aR)(1)当a2时,求f(x)的图象在x1处的切线方程;,解当a2时,f(x)2lnxx22x,,切线的斜率kf(1)2,则切线方程为y12(x1),即2xy10.,解析答案,解析答案,解析答案,热点三利用导数解决生活中的优化问题生活中的实际问题受某些主要变量的制约,解决生活中的优化问题就是把制约问题的主要变量找出来,建立目标问题即关于这个变量的函数,然后通过研究这个函数的性质,从而找到变量在什么情况下可以达到目标最优,解析答案,例3某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度)设该蓄水池的底面半径为r米,高为h米,体积为V立方米假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12000元(为圆周率)(1)将V表示成r的函数V(r),并求该函数的定义域;,解因为蓄水池侧面的总成本为1002rh200rh(元),底面的总成本为160r2元所以蓄水池的总成本为(200rh160r2)元又根据题意得200rh160r212000,,思维升华,(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大,令V(r)0,解得r15,r25(因为r25不在定义域内,舍去)当r(0,5)时,V(r)0,故V(r)在(0,5)上为增函数;,由此可知,V(r)在r5处取得最大值,此时h8.即当r5,h8时,该蓄水池的体积最大,解析答案,利用导数解决生活中的优化问题的一般步骤(1)建模:分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式yf(x)(2)求导:求函数的导数f(x),解方程f(x)0.(3)求最值:比较函数在区间端点和使f(x)0的点的函数值的大小,最大(小)者为最大(小)值(4)作答:回归实际问题作答,思维升华,解析答案,跟踪演练3经市场调查,某商品每吨的价格为x(1x14)百元时,该商品的月供给量为y1万吨,月需求量为y2万吨,当该商品的需求量大于供给量时,销售量等于供给量;当该商品的需求量不大于供给量时,销售量等于需求量,该商品的月销售额等于月销售量与价格的乘积,因为1x14,所以11,即a0时,函数f(x)在(1,2a1)上单调递减,在(0,1),(2a1,)上单调递增,当2a10,即a-时,函数f(x)在(0,1)上单调递减,在(1,)上单调递增;,解析答案,解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论