




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 / 11 中考数学二轮复习:折叠问题 本资料为 WoRD文档,请点击下载地址下载全文下载地址 十折叠问题 首先,在最近几年的中考中题折叠问题中频频出现,这对于我们识别和理解几何图形的能力、空间思维能力和综合解决问题的能力都提出了比以往更高的要求。希望通过今天的讨论,使同学们对折叠问题中有关的几何图形之间的位置关系和数量关系有进一步认识;在问题分析和解决的过程中巩固头脑中已有的有关几何图形的性质以及解决有关问题的方法;并在观察图形和探索解决问题的方法的过程中提高分析问题和解决问题的能力。 那么,什么是 折叠问题呢? 这个问题应分两个方面,首先什么是折叠,其次是和折叠有关的问题。下面我们将对它们分别进行讨论 一 .折叠的意义 1折叠,就是将图形的一部分沿着一条直线翻折 180º,使它与另一部分在这条直线的同旁,与其重叠或不重叠;显然, “ 折 ” 是过程, “ 叠 ” 是结果。 如图( 1)是线段 AB 沿直线 l 折叠后的图形,其中 oB 是oB在折叠前的位置; 2 / 11 图( 2)是平行四边形 ABcD 沿着对角线 Ac 折叠后的图形,ABc 是 ABc 在折叠前的位置,它们的重叠部分是三角形; (2)图形在折叠前 和折叠后翻折部分的形状、大小不变,是全等形 如图如图( 1)中 oB=oB ; 如图( 2), ABcABc ; (3)图形的翻折部分在折叠前和折叠后的位置关于折痕成轴对称 如图( 1) oB 和 oB关于直线 l 成轴对称; 如图( 2) ABc 和 ABc 关于直线 Ac成轴对称。 二和折叠有关的问题 图形经过折叠,其翻折的部分折叠前的图形组合成新的图形,新的图形中有关的线段和角的位置、数量都有哪些具体的关系呢?这就是我们今天要重点讨论的问题。下面,我们以矩形的折叠为例,一同来探讨这个问题。 问题 1: 将宽度为 a 的长方形纸片折叠成如图所示的形状,观察图中被覆盖的部分 AEF. ( a) AEF 是什么三角形? 3 / 11 结论:三角形 AEF 是等腰三角形 证明:方法一, 图形在折叠前和折叠后是全等的 , 1=2, 又 矩形的对边是平行的 1=3,2=3, AE=AF 三角形 AEF 是等腰三角形 方法二: 图形在折叠前和折叠 后的形状、大小不变, 只是位置不同 表示矩形宽度的线段 EP和 FQ相等,即 AEF 的边 AE 和 AF 上的高相等, AE=AF 三角形 AEF 是等腰三角形 (b)改变折叠的角度 的大小, 三角形 AEF 的面积是否会改变? 为什么 ? 答:不会改变。 分析: 的改变影响了 AE 的长度,但却不 能改变边 AE 上的高,三角形 AEF 的 面积会随着 的确定而确定 . 4 / 11 例一:在上面的图中,标出点 A 在折叠前对应的位置 A,四边形 AEAF 是什么四边形? 分析: ( 1)由前面的分析可知 A 与 A 在折叠前 的位置 A 关于折痕 EF 成轴对称 ,所以作 A 关 于 EF的对称点即 可找到点 A(过点 A 作 AAEF 交矩形的边于点 A)。 同学们还可以动手折叠一下,用作记号的方法找到点 A。 ( 2)四边形 AEAF 是菱形 证法一: A 是 A 在折叠前对应的位置 , A 和 A 关于直线 EF轴对称 , AAEF, 且 Ao=Ao, 又 AEAF,EooF=AooA, Eo=oF 四边形 AEAF 是菱形 证法二: A 是 A 在折叠前对应的位置 , AEFAEF, AE=AE,AF=AF , 又 ͧ 0;AEF是等腰三角形(已证) ,AE=AF, AE=AF=AE=AF, 5 / 11 四边形 AEAF 是菱形 . 例 2.在上题的图中 ,若翻折的角度 =30º,a=2, 求图中被覆盖的部分 AEF. 的面积 .。 分析: 图中被覆盖的部分 AEF 是等腰三角形,其腰上的高就是原 矩形的宽度 2,所以,本题的解题关键就是要求出腰 AF 或AE 的长。 答: S 四边形 AEAF 2SAEF= (解答过程略) 练一练:当 的大小分别 45º、 60º时,图中被覆盖的部分 AE F.的面积是多少? 例题 3.如图:将矩形 ABcD对折, 折痕为 mN,再沿 AE折叠,把 B 点叠在 mN上,(如图中 1 的点 P) , 若 AB=3, 则折痕 AE的长为多少? 分析: 折痕 AE 为直角三角形 ABE 的斜边,故解决本题的关键是求PE(或 BE)的长。 解法一:由折叠的意义可知, APEP, 6 / 11 延长 EP 交 AD 于 F,则 FE=FA(在问题一中已证 )m 、 N 分别是矩形的边 AB 和 cD的中点, mNADBc 且 EPPF=BNNA=11, 又 APE=D=90,AE=AFAE=AF=EF, 1=2=30,1=30AE=2 。 m 、 N 分别是矩形的边 AB 和 cD 的中点, mNADBc 且AN是 AP的一半 mNANAE=AF 又 FE=FA(问题 1 的结论 ) AE=AF=EF,1=2=30,1=30 AE=2 。 由 Bc/mN/DA 且 m、 N 分别为 cD和 AB的中点可得 EP=PF,Eo=Ao Po=AF , 又 Po=AE, AE=AF AE=AF=EF , EAF=60 (其余同上) 例 题 4.在例 3 中,若 m、 N 分别为 cD、 AB的三等分点(如图), AB=5, 其他条件不变,折痕 AE的长为多少? 分析:本题与上一题略有不同, mN 由原来的二等分线变为7 / 11 三等分线,其他条件不变。所以本题的解题关键还是求出EB(或 EP)的长 解:延长 EP交 AD于 F,则 FE=FA(已证 ) m 、 N 分别是矩形的边 AB 和 cD的三等分点 mNADBc 且 EPPF=BNNA=12, 设 EP=x,则 PF=2x,AF=EF=3x, 在直角三角形 APF 中有 AP²+PF²=AF² 5+(2x)²=(3x)², x=1,AE²=1+5=6, AE= 例 4 如图 3,有一张边长为 3 的正方形纸 片 (ABcD),将其对折 ,折痕为 mN,再将点 B 折至折痕 mN上 ,落在 P 点的位置 ,折痕为 AE.(1)求 mP的长 ;(2)求以 PE为边长的正方 形的面积 . 分析: 将本题与例题 2 比较,不难看出它们的共同之处,显然,解决本题的关键是求 PE和 PN的长 解法一: 延长 EP交 AD的延长线于 F,则 FE=FA(已证 ) m、 N 分别是矩形的边 AB和 cD的中点, mNADBc 且 AN8 / 11 是 AP 的 一 半mNANAE=AFAE=AF=EF,1=2=30,1=30 PN= , (1)mP=1 -PN=3-, 又 AP=3,EP= , (2) 以 EP为边长的正方形的面积为 3。 其他解法请同学们思考。 例 5.如图,将矩形 ABcD折叠, 使 c 点落在边 AB上,(如图中的 m 点),若 AB=10,Bc=6,求四边形 cNmD的面积 分析:本题与上一题区别在于点 c 折叠后落在矩形的边 AB上,由折叠的意义可以知道, AcN 和 AmN 是 全等的,所以,求四边形 cNmD 的面积的关键就是求 DcN 或 DmN 的面积,所以本题的解题关键还是求出 Nc(或 BN)的长 . 解 :在直角三角形 ADm 中 ,AD=6,Dm=Dc=10,由勾股定理可以求得 Am=10-8=2. 设 Nc=x,则 mN=x,BN=6-x, 在 RtBmN 中, mN2=BN2+Bm2 x2= ( 6-x) 2+4 x= S 四边形 cNmD=2SDcN= 9 / 11 例 6.将长为 8,宽为 6 的矩形 ABcD折叠,使 B、 D 重合,( 1)求折痕 EF的长。( 2)求三角形 DEF的面积 分析:由矩形折叠的意义可知, EF 垂直平分 BD( o 为BD的中点由 AB/Dc可得 Eo:Fo=Bo:Do=1:1o 为 EF的中点,所以 可设法先求出 Eo的长,或直接求 EF的长 ,进而求三角形 DEF面积。 解(法一): D 、 B 关于 EF 成轴对称 EF 垂直平分 DB,又 DccB, DoEDcB 在 RtDcB 中,由勾股定理可得 BD=10 又 AB/Dc Eo:oF=Do:oB Do=5 (1)由 DoEDcB 得 Do:Dc=DE:Bc Eo:6=5:8 Eo= EF = (2)SDEF=EFDo=5= 10 / 11 解(法二): (1)过 c 作 cP/EF,交 AB于 P EFDB cPDB 易得 cBPDcB cP:BD=cB:Dc EF= (2)SDEF=EFDo=5= 同学们,图形折叠问题中题型的变化比较多,但是经过研究之后不难发现其中的规律,从今天我们对矩形折叠情况的讨论中可以得到以下几点经验: 1图形的翻折部分在折叠前和折叠后的形状、大小不变,是全等形; 2 图形的翻折部分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 某大型集团管理咨询项目建议书
- 工业废弃地到生态校区的转型策略研究
- 工业旅游发展与城市形象塑造策略研究
- 工业机器人设计与操作流程
- 工业废物处理的先进技术介绍
- 工业机器人技术及发展趋势分析
- 工业污染防治及废弃物管理
- 工业自动化中的智能机器人技术探讨
- 工业涂装的环保要求与措施
- 工业设计中的创新理念与方法
- 2025年高考江苏卷物理真题(解析版)
- 2025年重庆市中考化学试卷真题(含标准答案)
- 2024年北京市初中学业水平考试语文试卷及答案
- 电力行业电力运行维护与故障处理知识题库
- 2025年辽宁省高考生物试卷(含答案)
- 公司期货交易管理制度
- 医院检验科实验室生物安全程序文件SOP
- 合伙公司管理制度规定办法
- 混凝土护栏技术交底
- 药物临床试验的伦理审查课件
- EHS目标与指标管理一览表
评论
0/150
提交评论