




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
小学六年级数学培优专题训练一、夯实基础1数的意义(4)百分数百分数后面不带计量单位。二、典型例题数的认识课堂过关卷一、细心填空1用3个0和3个6组成一个六位数,只读一个零的最大六位数是( );读两个零的六位数是( );一个零也不读的最小六位数是( )。2一个三位小数,四舍五入后得4.80,这个三位小数最大是( ),最小是( )。3若被减数、减数与差这三个数的和为36,那么被减数为( )。4把0.35,34%,从大到小排序( )。5某班男生人数是女生的,女生人数占全班人数的( )6甲数比乙数多25%,则乙数比甲数少( )%。7一个分数的分子比分母少20,约分后是,这个分数是( )。8写出三个比小,而比大的最简分数是( )、( )、( )。9中有( )个。10有一个最简真分数,分子和分母的积是36,这个分数最大是( )。11A+B=60,AB=,A=( ),B=( )。12( )( )=(填两个分母小于12的分数) = (填两个不同的整数)。13一个最简分数,若分子加上1,可以约简为,若分子减去一,可化简成,这个分数是( )。14修一段600米长的路,甲队单独修8天完成,乙队单独修10天完成。两队合修( )天完成它的。15一种商品,先提价20%,又降价20%后售价为96元,原价为( )元。16甲、乙两个数的差是35.4,甲、乙两个数的比是5:2,这两个数的和是( )。17有甲、乙、丙三种,甲种盐水含盐量为4%,乙种盐水含盐量为5%,丙种盐水含盐量为6%。现在要用这三种盐水中的一种来加水稀释,得到含盐量为2%的盐水60千克。如果这项工作由你来做,你打算用( )种盐水,取( )千克,加水( )千克。18x表示取数x的整数部分,比如13.58=13。若x=8.34,则x2x3x=( )。二、选择1 最大的小数单位与最小的质数相差( )。 A 1.1 B 1.9 C 0.9 D 0.123.999保留两位小数是( )。 A 3.99 B 4.0 C4.00 D3.903下列四个数中,最大的是( )。A101% B0. CD1 4.平均每小时有36至45人乘坐游览车,那么3小时中有 人乘坐游览车。 A少于100 B100与150之间 C150与200之间 D200与250之间5.小明所在班级的数学平均成绩是98分,小强所在班级的数学平均成绩是96分,小明考试得分比小强的得分( )。 A高 B低 C一样高 D无法确定6一次数学考试,5名同学的分数从小到大排列是74分、82分、a分、88分、92分,他们的平均分可能是( )。A75 B84 C86 D93 7的分子加上6,如果要使这个分数的大小不变,分母应该()A加上20 B加上6 C扩大2倍 D增加3倍 8书店以50元卖出两套不同的书,一套赚10%,一套亏本10%,书店是( ) A亏本 B赚钱 C不亏也不赚9把1克盐放入100克水中,盐与盐水的比是( )。 A1:99 B1:100 C1:101 D100:10110甲、乙两个仓库所存煤的数量相同,如果把甲仓煤的调入乙仓,这时甲仓中的煤的数量比乙仓少( )。 A.50% B.40% C.25%三、星级挑战1财会室会计结账时,发现财面多出32.13元钱,后来发现是把一笔钱的小数点点错了一位,原来这笔钱是多少元? 2暑假期间,明明和亮亮去敬老院照顾老人。7月13日他们都去了敬老院,并约好明明每两天去一次,亮亮每3天去一次。(1)7月份,他们最后一次同去敬老院的日子是( )。(2)从7月13日到8月31日,他们一起去敬老院的情况有( )次。第2讲 数的整除一、夯实基础整数a除以整数b(b0),除得的商正好是整数而没有余数,我们就说a能被b整除,也可以说b能整除a。如果数a能被数b整除,那么a就叫做b的倍数,b就叫做a的因数。能被2整除的数叫偶数。也就是个位上是0、2、4、6、8的数是偶数。不能被2整除的数叫奇数。也就是个位上是1,3,5,7,9的数是奇数。一个数如果只有1和它本身两个因数,这个数叫做质数。一个数除了1和它本身,还有别的因数,这个数叫做合数。每个合数都可以写成几个质数相乘的形式,这几个质数都叫做这个合数的质因数。把一个合数用质因数相乘的形式表示出来,叫做分解质因数。公因数只有1的两个数或几个数,叫做互质数。几个数公有的因数,叫做这几个数的公因数,其中最大的一个,叫做最大公因数。几个数公有的倍数,叫做这几个数的公倍数。其中最小的一个叫做这个数的最小公倍数。二、典型例题 例3同学们在操场上列队做体操,要求每行站的人数相等,当他们站成10行、15行、18行、24行时,都能刚好站成一个长方形队伍,操场上同学最少是多少人? 分析:题目要求的是“最少”为多少人,可知操场上的同学数量正好是10、15、18、和24的最小公倍数。解:10、15、18和24的最小公倍数是:2351134=360答:操场上的同学最少是360人。数的整除课堂过关卷一、填空1在l至20的自然数中,( )既是偶数又是质数;( )既是奇数又是合数。2一个数,如果用2、3、5去除,正好都能整除,这个数最小是( ),用一个数去除30、40、60正好都能整除,这个数最大是( )。38( )5( )同时是2, 3 ,5的倍数,则这个四位数为( )。4一个五位数735,如果这个数能同时被2、3、5整除,那么代表的数字是( ),代表的数字是( )。5从0、5、8、7中选择三个数字组成一个同时能被2、3、5整除的最大三位数,这个三位数是( ),把它分解质因数是:( )。6把84分解质因数:84=( )。72和54的最大公约数是( )。712的约数有( ),从中选出4个数组成一个比例是( )。8公因数只有( )的两个数,叫做互质数,自然数a和( )一定是互质数。9a、b都是非零自然数,且ab=c,c是自然数,( )是( )的因数,a、b的最大公因数是( ),最小公倍数是( )。10A、B分解质因数后分别是:A=237,B=257。A、B最大公因数是( ),最小公倍数是( )。 11A=223,B=2C5, 已知A、B两数的最大公约数是6,那么C是( ),A、B的最小公倍数是( )。12在括号里填上合适的质数:( )( )=21=( )( )。13两个质数的和是2001,这两个质数和积是( )。1445与某数的最大公因数是15,最小公倍数是180,某数是( )。15已知两个互质数的最小公倍数是153,这两个互质数是( )和()。二、解决问题1有两根绳子,第一根长18米,第二根长24米,要把它们剪成同样长短的跳绳,而且不能有剩余,每根跳绳最长多少米?一共可剪成几根跳绳?2一块长方形木板长20分米,宽16分米。要锯成相同的正方形木板,要求正方形木板的面积尽量大,而且原来木板没有剩余,可以锯成多少块?每块正方形木板的面积是多少平方分米?3汽车站有开住甲、乙、丙三地的汽车,到甲地的汽车每隔15分钟开出一辆;到乙地的汽车每隔27分钟开出一辆;到丙地的汽车每隔36分钟开出一辆。三路汽车在同一时刻发车以后,至少需要经过多少时间,才能又在同一时刻发车?三、星级挑战1有一行数:1,1,2,3,5,8,13,21,34,55,从第三个数开始,每个数都是前两个数的和,在前100个数中,偶数有多少个? 2有一堆苹果,如果3个3个的数,最后余2个,如果5个5个的数,最后余4个,如果7个7个的数,最后余6个,这堆苹果最少有多少个? 第3讲 简便运算(1)一、夯实基础所谓简算,就是利用我们学过的运算法则和运算性质以及运算技巧,来解决一些用常规方法在短时间内无法实现的运算问题。简便运算中常用的技巧有“拆”与“凑”,拆是指把一个数拆成的两部分中含有一个整十、整百、整千或者有利于简算的数,凑是指把几个数凑成整十、整百、整千的数,或者把题目中的数进行适当的变化,运用运算定律或性质再进行简算。让我们先回忆一下基本的运算法则和性质:乘法结合律:abc=a(bc)=(ac)b乘法分配律:a(bc)=abac a(bc)=abac二、典型例题例1. (1)9999777833336666 (2)765640.52.50.125分析(一):通过观察发现这道题中9999是3333的3倍,因此我们可以把3333和6666分解后重组,即333332222=99992222 这样再利用乘法分配律进行简算。 解(一): 原式=99997778333332222 =9999777899992222 =(77782222)9999 =99990000 分析(二):我们知道0.52,2.54,0.1258均可得到整数或整十数,从而使问题得以简化,故可将64分解成248,再运用乘法交换律、结合律等进行计算。 解(二): 原式=765(248)0.52.50.125 =765(20.5)(42.5)(80.125) =7651101 =7650例2399.6919980.8 分析:这道题我们仔细观察两个积的因数之间的关系,可以发现减数的因数1998是被减数因数399.6的5倍,因此我们根据积不变的规律将399.69改写成(399.65)(95),即19981.8,这样再根据乘法分配律进行简算。 解: 原式=(399.65)(95)19980.8 =19981.819980.8 =1998(1.80.8) =19981=1998例3654321123456654322123455 分析:这道题通过观察题中数的特点,可以看出被减数中的两个因数分别比减数中的两个因数少1和多1,即654321比654322少1,123456比123455多1,我们可以将被减数改写成(654321)(1234551),把减数改写成(6543211)123455,再利用乘法分配律进行简算。 解: 原式=654321(1234551)(6543211)123455 =654321123455654321654321123455123455 =654321123455 =530866三、熟能生巧1(1) 888667444666 (2)9999122233336662(1) 400.6720030.4 (2)2397.29568.2 3(1) 1989199919882000 (2)8642246886442466四、拓展演练11234432624682837 2 2751216502333007.53 7654321123456776543221234566 六、星级挑战1315325335345 2333345555577777 39999999999994. 48.67673.2486.7973.40.05第4讲 简便运算(2)一、夯实基础在进行分数的运算时,可以利用约分法将分数形式中分子与分母同时扩大或缩小若干倍,从而简化计算过程;还可以运用分数拆分的方法使一些复杂的分数数列计算简便。同学们在进行分数简便运算式,要灵活、巧妙的运用简算方法。让我们先回忆一下基本的运算法则和性质:乘法结合律:abc=a(bc)=(ac)b乘法分配律:a(bc)=abac a(bc)=abac拆分:= =()三、熟能生巧2(1) (2)(1)()四、拓展演练1(1)12341 (2)2.843(11.42)12 (1) (2)(96)(32)3 3 4 1第5讲 简便运算(3)一、 夯实基础所谓简算,就是利用我们学过的运算法则和运算性质以及运算技巧,来解决一些用常规方法在短时间内无法实现的运算问题。简便运算中常用的技巧有“拆”与“凑”,拆是指把一个数拆成的两部分中含有一个整十、整百、整千或者有利于简算的数,凑是指把几个数凑成整十、整百、整千的数,或者把题目中的数进行适当的变化,运用运算定律或性质再进行简算。让我们先回忆一下基本的运算法则和性质:等差数列的一些公式:项数=(末项首项)公差1某项=首项公差(项数1)等差数列的求和公式:(首项末项)项数2二、典型例题例1 2468198200 分析:这是一个公差为2的等差数列,数列的首项是2,末项是200。这个数列的项数=(末项首项)公差1=(2002)21=100项,如何求和呢?我们先用求平均数的方法:首、末两项的平均数=(2200)2=101;第二项和倒数第二项的平均数也是(498)2=101依次求平均数,共算了100次,把这100个平均数加起来就是数列的和。即和=(首项末项)2项数。 解: 原式=(2200)2100=10100例2 0.99.999.9999.99999.999999.9分析:通过观察我们可以发现题目中的6个加数都分别接近1、10、100、1000、10000、100000这6个整数,都分别少0.1,因此我们可以把这6个加数分别看成1、10、100、1000、10000、100000的整数,再从总和中减去6个0.1,使计算简便。解: 原式=1101001000100001000000.16 =1111110.6=1111110.4三、熟能生巧1 135765672 999999999999999311201221122112211221112011201120四、拓展演练1(1)0.110.130.150.970.99(2)8.90.28.80.28.70.28.10.22(1)98998999899998999998 (2)3.90.390.0390.00390.000393(1)12344321432143214321123412341234 (2)200260066006300340044004六、星级挑战1 (1)438.95 (2)47.265 (3)574.6225 (4)14.7580.25 2. (44332443.32)(88664886.64)3 1.82.83.850.84 20021999199619931990198716131074第6讲 简易方程一、夯实基础 含有未知数的等式叫做方程,求方程的解的过程叫做解方程。解方程是列方程解应用题的基础,解方程通常采用以下策略:对方程进行观察,能够先计算的部分先进行计算或合并,使其化简。把含有未知数的式子看做一个数,根据加、减、乘、除各部分的关系进行化简,转化成熟悉的方程。再求方程的解。将方程的两边同时加上(或减去)一个适当的数,同时乘上(或除以)一个适当的数,使方程简化,从而求方程的解。重视检验,确保所求的未知数的值是方程的解。二、典型例题例1解方程4(x2)15=7x20分析:先运用乘法分配律将其展开,再运用等式的基本性质合并求解。 4(x2)15=7x20解: 4x815=7x20 3x=27 x=9 经检验x=9是原方程的解。例2解方程x2=(3x10)5 分析:根据等式的基本性质,将方程两边同乘2和5的最小公倍数,使方程转化为x5=(3x10)2再求解。 x2=(3x10)5解: x210=(3x10)510 x5=(3x10)2 5x=6x20 x20=0 x=20 经检验x=20是原方程的解。例3解方程360x3601.5x=6 分析:根据等式性质,将方程左右两边同乘3x使方程转化后再求解。 360x3601.5x=6解: 1080720=18x 18x=360 x=20 经检验x=20是原方程的解。三、熟能生巧1122(x1)=4 5x19=3(x4)15 2(2x4)18=28 (5.3x5)7=x8 37(x3)=3(x5)4 xx32x30=180四、拓展演练1(x+10)6 84.5x32xx x7.4=x9.23 :18% 五、举一反三六、星级挑战1解方程: 13x4(2x5)=17(x2)4(2x1)2解方程: 17(23x)5(12x)=8(17x)3解方程:=24. 解方程:(x5)=3(x5)第7讲 定义新运算一、夯实基础同学们,我们都知道四则运算包括加、减、乘、除,我们接触到的运算符号也无外乎“”、“”、“”、“”。而在升学考试中,经常会出现一些崭新的题目,这种题目中又出现了新的运算符号,如:、并赋予它们一种新的运算方法。这种运算符号本身并不重要,重要的是在题目中,各种运算符号规定了某种运算以及运算顺序。这种运算非常有趣,同学们,你们想了解吗?这一节我们就来学习定义新运算。二、典型例题例1 (1)ab=ab,求95的值。(2)定义新运算“ ”,mn=mn2.5。求: 60.40.4的值是多少? 3510.3的值是多少?分析(1):本题中的新运算符号“”表示的是求“”前后两个数的和,也就是求9与5的和是多少。解(1) : 95=95=14分析(2):本题中新运算“”的含义是求“”前后两个数的商的2.5倍是多少。解(2): 60.40.4=60.40.42.5=1512.5=377.5 3510.3=3510.32.5=11702.5=2925例2 对于任意两个自然数,定义一种新运算“*”,a*b=(ab)2,求34*(52*48)值。分析:新运算“*”的含义表示:求“*”前后两数差的一半。本题在计算时,要注意运算顺序,先计算括号内的“52*48”,再用34与“52*48”的结果在进行一次这样的运算。 解:52*48=(5248)2=42=2 因此34*(52*48)=34*2=(342)2=322=16。例3定义两种新运算“”和“*”,对于任意两个 数x、y,规定xy=x5y,x*y=(xy)2 ,求563.5*2.5的值。 分析:本题包含两种新运算,第一种新运算“”表示求“”前面的数与后面数的5倍的和是多少;第二种运算“*”表示“*”前面的数减去“*”后面数的差的2倍是多少。所以可以根据他们各自的含义分别求值再作和。 解:56=556=35 3.5*2.5=(3.52.5)2=2 563.5*2.5=352=37三、熟能生巧1(1) ab=ab,求45.238.9的值。(2)x、y是两个自然数,规定xy=(x+y)10,求38的值。2定义一种新运算“”,规定AB=2(AB),求0.6(5.45)的值。3定义两种新运算“”和 “”,已知ab=a24.1b,ab=83(ab),求6142的值。四、拓展演练1 (1)定义一种新运算“”,规定AB=4A3B5,求(1)69 (2)96。(2)定义一种新运算“”,规定ab=(3xy)2x,求:1015 15102(1)定义新运算“”,规定mn=(mn)2,那么8 (122)与12(82)是否相等?如果不相等,哪个大?(2)定义一种新运算“”,已知ab=5a10b,求3758的值。3定义两种运算“”和“”,对于任意两个整数a,b,ab=ab1,ab=ab1。计算4(68)(35)。五、举一反三六、星级挑战1定义新运算“”,若23=234,54=5678。求2(32)的值。2. 设a、b表示两个数如果ab,规定:ab=3a2b;如果ab,规定:ab=(ab)3。求: 96 88 273设a、b表示两个数,ab=aba+b,已知a7=37,求a的值。 4设a、b表示两个整数,规定:a b=a(a1)(a2)(a3)(ab1),求1100的值。第8讲 巧求面积(1)一、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新零售背景下实体书店顾客体验升级研究报告
- 2025至2030年中国减肥药行业市场深度分析及未来发展趋势预测报告
- 解析卷北师大版9年级数学上册期末试题附答案详解【轻巧夺冠】
- 解析卷山东省乐陵市中考数学真题分类(位置与坐标)汇编章节测试试题(含答案解析)
- 解析卷人教版8年级数学下册《平行四边形》定向攻克试题(含详细解析)
- 2025版水利工程地质勘察合同范本
- 2025办公空间租赁合同(含装修及维护条款)
- 2025年度润滑油产品回收与再利用合同
- 2025年度专业图形设计电脑租赁合同范本
- 2025年度餐饮企业员工职业培训合同范本
- 2025上海市食品药品包装材料测试所公开招聘笔试参考题库附答案解析
- 2025秋季开学初班主任会议德育副校长讲话:从‘知责’到‘善育’这4步你做到几步
- 新生儿病房护理安全管理
- 瑞雪迎春春节家宴主题说明书
- 军用车修理知识培训课件
- 乘客遗失物品处理课件
- 2025年云南省中考物理真题(含答案)
- 医院保卫科岗位竞聘工作汇报
- 医院科室停电应急预案
- 2025年教育学家教学理论考试试题及答案解析
- 2025年职业指导师中级专业能力试卷:就业指导实务操作技能
评论
0/150
提交评论