




已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
习题课二项式定理的应用,第1章计数原理,学习目标1.能熟练地掌握二项式定理的展开式及有关概念.2.会用二项式定理解决与二项式有关的简单问题.,题型探究,知识梳理,内容索引,当堂训练,知识梳理,1.二项式定理及其相关概念,2.二项式系数的四个性质(杨辉三角的规律)(1)对称性:;(2)性质:;(3)二项式系数的最大值:当n是偶数时,中间的一项取得最大值,即最大;当n是奇数时,中间的两项相等,且同时取得最大值,即_最大;(4)二项式系数之和,所用方法是.,赋值法,或,题型探究,命题角度1两个二项式积的问题例1(1)在(1x)6(1y)4的展开式中,记xmyn项的系数为f(m,n),则f(3,0)f(2,1)f(1,2)f(0,3)_.,类型一二项式定理的灵活应用,解析f(3,0)f(2,1)f(1,2)f(0,3),答案,解析,120,解析(1ax)(1x)5(1x)5ax(1x)5.,(2)已知(1ax)(1x)5的展开式中x2的系数为5,则a_.,答案,解析,1,则105a5,解得a1.,两个二项式乘积的展开式中特定项问题(1)分别对每个二项展开式进行分析,发现它们各自项的特点.(2)找到构成展开式中特定项的组成部分.(3)分别求解再相乘,求和即得.,反思与感悟,跟踪训练1(x)(2x)5的展开式中各项系数的和为2,则该展开式的常数项为_.,答案,解析,40,解析令x1,得(1a)(21)52,a1,,令52r1,得r2,,令52r1,得r3,,命题角度2三项展开式问题,答案,解析,(r20,1,2,5r1).,令5r12r20即r12r25.,三项或三项以上的展开问题,应根据式子的特点,转化为二项式来解决,转化的方法通常为配方法,因式分解,项与项结合,项与项结合时,要注意合理性和简捷性.,反思与感悟,跟踪训练2求(x23x4)4的展开式中x的系数.,解答,例3已知(2x)n.(1)若展开式中第五项、第六项、第七项的二项式系数成等差数列,求展开式中二项式系数最大的项的系数;,类型二二项式系数的综合应用,解答,即n221n980,得n7或n14.当n7时展开式中二项式系数最大的项是第四项和第五项,,(2)若展开式中前三项的二项式系数之和等于79,求展开式中系数最大的项.,解答,得n13(舍去)或n12.设Tr1项的系数最大,,解得9.4r10.4.0r12,rN*,r10.展开式中系数最大的项是第11项,,解决此类问题,首先要分辨二次项系数与二项展开式的项的系数,其次理解记忆其有关性质,最后对解决此类问题的方法作下总结,尤其是有关排列组合的计算问题加以细心.,反思与感悟,跟踪训练3已知展开式中二项式系数之和比(2xxlgx)2n展开式中奇数项的二项式系数之和少112,第二个展开式中二项式系数最大的项的值为1120,求x.,解答,解依题意得2n22n1112,整理得(2n16)(2n14)0,解得n4,所以第二个展开式中二项式系数最大的项是第五项.,化简得x4(1lgx)1,所以x1或4(1lgx)0,,当堂训练,1.在x(1x)6的展开式中,含x3项的系数为_.,答案,2,3,4,5,1,解析,解析因为(1x)6的展开式的第(r1)项为Tr1x(1x)6的展开式中含x3的项为15x3,所以系数为15.,15,2.的展开式中常数项为_.,答案,2,3,4,5,1,解析,20,令62r0解得r3.,3.的展开式中x3y3的系数为_.,答案,2,3,4,5,1,解析,6,4.已知的展开式中含的项的系数为30,则a_.,答案,2,3,4,5,1,解析,6,2,3,4,5,1,5.若(xm)8a0a1xa2x2a8x8,其中a556,则a0a2a4a6a8_.,答案,解析,128,规律与方法,1.两个二项展开式乘积的展开式中特定项问题(1)分别对每个二项展开式进行分析,发现它们各自项的特点.(2)找到构成展开式中特定项的组成部分.(3)分别求解再相乘,求和即得.2.三项或三项以上的展开问题应根据式子的特点,转化为二项式来解决(有些题目也可转化为计数问题解决),转化的方法通常为配方、因
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东玉米钢板仓施工方案
- 延寿咨询延寿方案公示
- 嘉兴建筑方案设计招聘
- 小市政施工方案归档吗
- 建筑劳务外包服务方案设计
- 咨询方案创新
- 2025年教师资格证考试初中生物教学知识与能力押题试卷解析
- 情人节浪漫宣言范本
- 文化产业园区合作协议
- 2025交警网校笔试试题及答案
- 胸部穿刺教学课件
- 2025-2026学年苏教版(2024)小学科学三年级上册(全册)课时练习及答案(附目录P102)
- 食材配送培训计划
- 2025-2026学年人教版小学数学六年级上册教学计划及进度表
- 2025年公共卫生检验员考试试卷及答案
- 2025年成都市中考物理真题(含答案)
- 第8课《回忆鲁迅先生》课件+++2025-2026学年统编版语文八年级上册
- 库欣综合征护理查房
- 员工培训课件心脑血管
- 2025年专武干部面试题目及答案
- 弱猪护理培训课件
评论
0/150
提交评论