




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章 信号1.信息是消息的内容,消息是信息的表现形式,信号是信息的载体2.信号的特性:时间特性,频率特性3.若信号可以用确定性图形、曲线或数学表达式来准确描述,则该信号为确定性信号若信号不遵循确定性规律,具有某种不确定性,则该信号为随机信号4.信号分类:能量信号,一个信号如果能量有限;功率信号,如果一个信号功率是有限的5.周期信号、阶跃信号、随机信号、直流信号等是功率信号,它们的能量为无限6.信号的频谱有两类:幅度谱,相位谱7.信号分析的基本方法:把频率作为信号的自变量,在频域里进行信号的频谱分析第二章 连续信号的频域分析1.周期信号频谱分析的常用工具:傅里叶三角级数;傅里叶复指数2.利用傅里叶三角级数可以把周期信号分解成无穷多个正、余弦信号的加权和3频谱反映信号的频率结构,幅频特性表示谐波的幅值,相频特性反映谐波的相位4.周期信号频谱的特点:离散性,谐波性,收敛性5.周期信号由无穷多个余弦分量组成周期信号幅频谱线的大小表示谐波分量的幅值相频谱线大小表示谐波分量的相位6.周期信号的功率谱等于幅值谱平方和的一半,功率谱反映周期信号各次谐波的功率分配关系,周期信号在时域的平均功率等于其各次谐波功率之和7.非周期信号可看成周期趋于无穷大的周期信号8.周期T0增大对频谱的影响:谱线变密集,谱线的幅度减少9.非周期信号频谱的特点:非周期信号也可以进行正交变换;非周期信号完备正交函数集是一个无限密集的连续函数集;非周期信号的频谱是连续的;非周期信号可以用其自身的积分表示10.常见奇异信号:单位冲激信号,单位直流信号,符号函数信号,单位阶跃信号11.周期信号的傅里叶变换:周期信号:一个周期绝对可积傅里叶级数离散谱非周期信号:无限区间绝对可积傅里叶变换连续谱12.周期信号的傅立叶变换是无穷多个冲激函数的线性组合脉冲函数的位置:n0 , n=0,1,2, .脉冲函数的强度:傅里叶复指数系数的2倍周期信号的傅立叶变换也是离散的;谱线间隔与傅里叶级数谱线间隔相同13.信号的持续时间与信号占有频带成反比14.信号在时域的翻转,对应信号在频域的翻转15.频域频移,时域只有相移,幅频不变;时域相移,只导致频域频移,相位不变第三章 连续信号分析1.正弦信号的性质:两个同频正弦信号相加,仍得同频信号,且频率不变,幅值和相位改变;频率比为有理整数的正弦信号合成为非正弦周期信号,以低频(基频f0)为基频,叠加一个高频 (频nf0)分量2.函数f(t)与冲激函数或阶跃函数的卷积: f(t)与冲激函数卷积,结果是f(t)本身; f(t)与冲激偶的卷积,d(t)称为微分器f(t)与阶跃函数的卷积, u(t)称为积分器3. 函数正交的充要条件是它们的内积为0第二章 离散傅里叶变换及其快速算法1.时域上周期序列的离散傅里叶级数在频域上仍是一个周期序列2.周期卷积特性:同周期序列的时域卷积等于频域的乘积 同周期序列的时域乘积等于频域的卷积3.周期卷积与线性卷积的区别:线性卷积在无穷区间求和;周期卷积在一个主值周期内求和 4.有限长序列隐含着周期性5.有限长序列的循环移位导致频谱线性相移而对频谱幅度无影响6FFT的计算工作量:FFT算法对于N点DFT,仅需(N/2)log2N 次复数乘法运算和Nlog2N 次复数加法第三章 随机信号分析与处理1 随机信号是随时间变化的随机变量,用概率结构来描述。对于离散型随机变量,用概率述;对于连续型随机变量,用概率密度描述。2方差:用于表明随机信号各可能值对其平均值的偏离程度,是随机信号取值分散性的度量3平稳随机信号的均值、方差、均方值是与时间无关的常量,相关函数及协方差仅是时移的函数,与随机信号的起止时刻t无关。平稳随机信号最重要的特点是随机信性。在不同时刻具有相同的统计特征。与平稳随机信号相反,非平稳随机信号的统计特性是随着时间的推移而变化的。4平稳随机信号的每一个样本都同样地经历了随机信号其它样本的各种可能状态,因而从一个样本的统计特性(时间平均)就能得到全部样本的统计特性(集平均),此类信号称为各态遍历性随机信号。5可以用时间充分长的单个样本函数的时间平均统计参数来代替总体的平均统计值6离散时间信号功率谱的特点: 1)功率谱是周期性的,因此可作傅立叶级数分解; 2)反演变换的积分区间是 -p-p 7系统的功率谱传输能力仅与系统的幅频特性有关,而与系统的相频特性无关。 互功率谱密度不仅包含有系统幅频特性函数的幅度信息,还包含有相位信息8频谱分析不改变信噪比功率谱分析 工程信号分析的关键是降低噪声,提高信噪比 傅里叶变换不会提高信噪比。 相关函数可以提高信噪比,但不反映频谱 相关函数的傅里叶变换功率谱,可以提高信噪比,又能反映频率结构9能量谱从频域提取信号中的周期分量或同频分量 相关函数从时域提取信号中的周期或同频分量10功率谱的性质 函数性质 自功率谱Sxx(f)是实偶函数; 互功率谱Sxy(f)是非奇非偶复函数; 双边谱:f(-,); 功率谱与相关函数包含的信息完全等价。 物理性质 Gxx(f)下的面积等于信号的总能量 Gxx(f)为能量有限信号的能量谱密度函数 或功率有限信号的功率谱密度函数 Gxx(f)任意频段间的面积该频带下信号的能量11 Rxy()能从延时域上描述输出与输入的相关关系相干函数则从频域上描述输出与输入的相关关系12 提高频率分辨率的途径:保持N不变,设法降低fm 或 增大采样间隔13细化分析的基本思想 移频低通滤波重新采样FFT14功率谱分析(Spectrum)的局限性: 1仅适应于线性叠加信号的频谱分析 2两信号频带不交叠时信号的分离 3不适用于非线性信号处理15从倒功率谱可以恢复信号的功率谱!一般在不关心相位信息时,采用实倒谱离散信号的分析一离散信号的时域描述和分析1模拟信号:时间和幅值均连续的信号(一般现实信号均为模拟信号) 离散时间信号(序列):只在离散的时间点上有定义的信号,通常由模拟或连续时间信号经采样得到.2在没有任何条件限制的情况下,从连续时间信号采样所得到的样本序列不能唯一地代表原来的连续时间信号。对同一个连续时间信号,当采样间隔不同时也会 得到不同的样本序列3时域抽样等效频域周期重复 频域抽样等效时域周期重复4抽样定理 时域对 f(t)抽样等效于频域对 F(w)重复时域抽样间隔不大于 1/2Wm 频域对F(w)抽样等效于时域对f(t)重复频域抽样间隔不大于1/2Tm满足抽样定理,则不会产生混叠二离散信号频域分析1离散傅里叶级数的性质 2时域连续函数造成频域是非周期的谱,而时域的非周期造成频域是连续的谱密度函数。 时域连续函数造成频域是非周期的谱 而频域的离散对应时域是周期函数。2 一个域的离散造成另一个域的周期延拓,因此离散傅里叶变换的时域和频域都是离散的和 周期的。3 时域的离散化造成频域的周期延拓,而时域的非周期对应于频域的连续4四种傅里叶变换形式的归纳 时间函数 频率函数 傅里叶变换 连续和非周期非周期和连续 傅里叶级数 连续和周期(T0)非周期和离散(0=2/T0) 序列的傅里叶变换 离散(T)和非周期周期(s=2/T)和连续 离散傅里叶变换 离散(T)和周期(T0)周期(s=2/T)和离散(0=2/T0)5 DFS:离散傅里叶级数 DTFT:序列的傅里叶变换 DFT:离散傅里叶变换6 周期序列的DFS及其性质 7 x(n)的N点DFT是x(n)的z变换在单位圆上的N点等间隔抽样 x(n)的DTFT在区间0,2上的N点等间隔抽样。8有限长序列的圆周移位导致频谱线性相移,而对频谱幅度无影响。9时域序列的调制等效于频域的圆周移位10 圆周卷积过程:1)补零2)周期延拓3)翻褶,取主值序列4)圆周移位5)相乘相加11 时域抽样造成频域周期延拓,频域抽样造成时域周期延拓12 x(n)为无限长序列混叠失真 x(n)为有限长序列,长度为M N=M 不失真 N=M 不失真地恢复原信号14 N一定时 信号最高频率与频率分辨率相矛盾 同时提高信号最高频率和频率分辨率,需增加采样点数N。15 频谱泄漏 改善方法:1)增加x(n)长度 2)缓慢截短16栅栏效应 改善方法 增加频域抽样点数N(时域补零),使谱线更密17提高频率分辨率方法:增加信号实际记录长度 补零并不能提高频率分辨率18序列的抽取与插值 抽取:减小抽样频率 插值:加大抽样频率19三 FFT变换1DFT要解决两个问题:一是离散与量化,二是快速运算。2 DFS性质3周期卷积特性 同周期序列的时域卷积等于频域的乘积 同周期序列的时域乘积等于频域的卷积 4 周期卷积与线性卷积的区别:线性卷积在无穷区间求和;周期卷积在一个主值周期内求 和 两个不同长度的序列可以进行线性卷积;只有同周期的两个序列才能进行周期卷积,且周期不变5有限长序列的循环移位导致频谱线性相移而对频谱幅度无影响。6 循环卷积 两序列长度必须相等 不等补0 卷积结果长度与两信号长度相等 为N 线性卷积 两序列长度可不等 卷积结果长度N1+N217 FFT的计算工作量 FFT算法对于N点DFT,仅需(N/2)log2N次复数乘法运算 和 Nlog2N 次复数加法8 一次复数乘法换算成实数运算量 4N2次实数乘法运算,N(4N-2)次实数加法运算9 DFT的基本思想 1)利用DFT系数的对称性和周期性,合并DFT运算中的某些项; (2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025安徽宿州市立医院招聘编外人员42人模拟试卷及答案详解(各地真题)
- 2025北京市第五十七中学招聘9人考前自测高频考点模拟试题带答案详解
- 2025南平建瓯市妇幼保健院招聘工作人员考前自测高频考点模拟试题附答案详解(考试直接用)
- 2025年上半年四川泸州市龙马潭区人民医院、泸州市龙马潭区第二人民医院、中医院考核招聘23人考前自测高频考点模拟试题及答案详解(夺冠系列)
- 2025年山东聊城市“水城优才·事编企用”储备产业人才引进模拟试卷附答案详解(黄金题型)
- 2025黑龙江牡丹江市东宁市教育局招聘公益性岗位模拟试卷及答案详解(必刷)
- 2025年河北医科大学第一医院招聘医疗工作人员7名模拟试卷含答案详解
- 2025江苏连云港市灌南县招聘事业单位人员43人模拟试卷及完整答案详解一套
- 2025辽宁盘锦汇鑫招商运营有限公司招聘招商人员人员考前自测高频考点模拟试题及答案详解(考点梳理)
- 2025广东深圳大学文化产业研究院周建新教授博士后招聘1人考前自测高频考点模拟试题带答案详解
- 买卖山岭合同标准文本
- 生产型企业工人的薪酬设计方案
- 高考化学复习清单
- 初中数学考试中常用的70条二级结论
- 【MOOC】英汉交替传译-东北大学 中国大学慕课MOOC答案
- 音乐情感及情绪 课件-2024-2025学年高中音乐人音版(2019)必修 音乐鉴赏
- DB14T 2922-2023 公路机电工程标准工程量清单及计量规范
- 新苏教版科学五年级上册《热对流》课件
- 2024年03月黑龙江省绥化市2024年度“市委书记进校园”引才活动引进1523名人才(第一阶段)笔试历年典型考题及考点研判与答案解析
- 喉癌“一病一品”
- 公路养护安全作业规程-公路养护作业安全的规定
评论
0/150
提交评论