




已阅读5页,还剩43页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2讲客观“瓶颈”题突破冲刺高分,试题特点“瓶颈”一般是指在整体中的关键限制因素,例如,一轮、二轮复习后,很多考生却陷入了成绩提升的“瓶颈期”无论怎么努力,成绩总是停滞不前.怎样才能突破“瓶颈”,让成绩再上一个台阶?全国高考卷客观题满分80分,共16题,决定了整个高考试卷的成败,要突破“瓶颈题”就必须在两类客观题第10,11,12,15,16题中有较大收获,分析近三年高考,必须从以下几个方面有所突破,才能实现“柳暗花明又一村”,做到保“本”冲“优”.,(2)f(x)是R上的奇函数,,又log25log24.12,1log24.120.8,结合函数的单调性:f(log25)ff(20.8),所以abc,即c0).信息:看到|AB|4,|DE|2,及点A,D的特殊位置,联想求A,D的坐标,利用点共圆,得p的方程.(2)信息:y24x,且|PF|3,联想抛物线定义,得点P坐标.信息:曲线C2渐近线过点P,得a,b间的关系,求出C2的离心率e.,解析(1)不妨设抛物线C:y22px(p0),,因此C的焦点到准线的距离是4.,(2)抛物线C1:y24x的焦点为F(1,0),准线方程为x1,且|PF|3,由抛物线的定义得xP(1)3,,(2)如图,设ABF2内切圆圆心为C,半径为r,,答案(1)B(2)B,答案(1)B(2)B,探究提高1.第(1)题由方程与不等式关系,寻求a1与d的关系,并得出an关于d的通项公式,利用单调性判断an的符号变化,由Sn的最值定n的值.2.线性规划问题求最值,关键明确待求量的几何意义,把所求最值看作直线的截距、斜率、两点间的距离、点到直线的距离等,数形结合求解.,解析(1)作出约束条件表示的平面区域,如图中阴影部分所示,由图知,当直线y2xb经过点A(2,2)时,b取得最大值,bmax2(2)(2)6,此时直线方程为2xy60.,信息联想(1)信息:由函数的零点,联想到函数图象交点,构造函数作图象.信息:由零点的个数及函数的图象,借助导数确定最值的大小关系.(2)信息:f(x)极大值4,联想到求a,进一步确定g(x)与区间(3,a1).信息:g(x)的极小值不大于m1,联想运用导数求g(x)的极小值,并构建不等式求m的范围.,解析(1)法一令f(x)0得(x1)lnxa(x1)b,,当01时,g(x)0.g(x)在(0,1)上单调递减,在(1,)上单调递增,则g(1)是函数g(x)的极小值,也是最小值,且g(1)0.作出y(x1)lnx与ya(x1)b的大致函数图象,如图,f(x)恒有两个不同的零点,ya(x1)b与g(x)(x1)lnx恒有两个交点,直线ya(x1)b恒过点(1,b),b0,从而bf(x2)f(cos2)在R上恒成立,即f(x1)f(1x1)f(cos2)f(1cos2)在R时恒成立,令F(x)f(x)f(1x),则F(x)f(x)f(1x),又f(x)0且f(1x)0,故F(x)0,故F(x)在R上是单调递增函数,又原不等式即F(x1)F(cos2),故有x1cos2恒成立,所以x1的取值范围是(1,).,答案B,探究提高1.创新命题是新课标高考的一个亮点,此类题型是用数学符号、文字叙述给出一个教材之外的新定义,如本例中的“伴随函数”,要求考生在短时间内通过阅读、理解后,解决题目给出的问题.2.解决该类问题的关键是准确把握新定义的含义,把从定义和题目中获取的信息进行有效整合,并转化为熟悉的知识加以解决.,即2(n1)d4k2k(2n1)d,整理得(4k1)dn(2k1)(2d)0,因为对任意正整数n上式恒成立,,所以数列bn的通项公式为bn2n1(nN*).,(2)因为小明在A处测得公路上B,C两点的俯角分别为30,45,所以BAD60,CAD45.设这辆汽车的速度为vm/s,则BC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流枢纽建设项目技术方案
- 燃气施工过程环境保护方案
- 配送中心选址与布局优化方案
- 校园安全教育知识手册
- 温室大棚结构安全建设标准
- 土建工程消防设施安装方案
- 水利枢纽工程方案
- 冷链仓储智能化安防监控系统部署方案
- 集中供热管网改造与升级方案
- 分子筛生产线项目工程方案
- 2025年医疗工作人员定向招聘考试笔试试题(含答案)
- 第二单元混合运算单元测试卷(含答案) 2025-2026学年人教版三年级数学上册
- 2025年中央一号文件客观题及参考答案
- 出境人员行前安全培训课件
- 俄乌局势进展
- 绘本《其实我很喜欢你》冯玉梅
- 绿色建筑材料和建筑设备
- 可靠性试验管理办法
- 蓄电池组充放电记录表格格式模板
- 智慧交通典型城市案例及启示
- 国家开放大学《人文英语4》边学边练参考答案
评论
0/150
提交评论