




已阅读5页,还剩33页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
十八章勾股定理复习,a2+b2=c2,形数,a2+b2=c2,三边a、b、c,t直角边a、b,斜边c,t,互逆命题,勾股定理:直角三角形的两直角边为a,b,斜边为c,则有,三角形的三边a,b,c满足a2+b2=c2,则这个三角形是直角三角形;较大边c所对的角是直角.,逆定理:,a2+b2=c2,互逆命题:两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.互逆定理:如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理叫做互逆定理,其中一个叫做另一个的逆定理.,命题:1、无理数是无限不循环小数的逆命题是。,无限不循环小数是无理数,2、等腰三角形两底角相等的逆命题:。,有两个相等角的三角形是等腰三角形,勾股数,满足a2+b2=c2的三个正整数,称为勾股数,2.在RtABC中,C=90.(1)如果a=3,b=4,则c=;(2)如果a=6,c=10,则b=;(3)如果c=13,b=12,则a=;(4)已知b=3,A=30,求a,c.,答案:(4)a=,c=.,5,8,5,第一组练习:勾股定理的直接应用(一)知两边或一边一角型,1.如图,已知在ABC中,B=90,若BC4,ABx,AC=8-x,则AB=,AC=.2.在RtABC中,B=90,b=34,a:c=8:15,则a=,c=.3.(选做题)在RtABC中,C=90,若a=12,c-b=8,求b,c.,答案:3.b=5,c=13.,3,5,16,30,第一组练习:勾股定理的直接应用(二)知一边及另两边关系型,1.对三角形边的分类.已知一个直角三角形的两条边长是3cm和4cm,求第三条边的长注意:这里并没有指明已知的两条边就是直角边,所以4cm可以是直角边,也可以是斜边,即应分情况讨论,答案:5cm或cm.,第一组练习:勾股定理的直接应用(三)分类讨论的题型,已知:在ABC中,AB15cm,AC13cm,高AD12cm,求SABC答案:第1种情况:如图1,在RtADB和RtADC中,分别由勾股定理,得BD9,CD5,所以BCBD+CD9+514故SABC84(cm2)第2种情况,如图2,可得:SABC=24(cm2),2.对三角形高的分类.Zxxk,图1,图2,第一组练习:勾股定理的直接应用(三)分类讨论的题型,【思考】本组题,利用勾股定理解决了哪些类型题目?注意事项是什么?利用勾股定理能求三角形的边长和高等线段的长度.注意没有图形的题目,先画图,再考虑是否需分类讨论.,1.在一块平地上,张大爷家屋前9米远处有一棵大树在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米出门在外的张大爷担心自己的房子被倒下的大树砸到大树倒下时能砸到张大爷的房子吗?()A一定不会B可能会C一定会D以上答案都不对,A,第二组练习:用勾股定理解决简单的实际问题,2.如图,滑杆在机械槽内运动,ACB为直角,已知滑杆AB长2.5米,顶端A在AC上运动,量得滑杆下端B距C点的距离为1.5米,当端点B向右移动0.5米时,求滑杆顶端A下滑多少米?,答案:解:设AE的长为x米,依题意得CE=AC-x,AB=DE=2.5,BC=1.5,C=90,AC=2.BD=0.5,AC=2.在RtECD中,CE=1.5.2-x=1.5,x=0.5.即AE=0.5.答:梯子下滑0.5米,第二组练习:用勾股定理解决简单的实际问题,答案:是证明:在RtACB中,BC=3,AB=5,AC=4DC=4-1=3在RtECD中,DC=3,DE=5,CE=4BE=CE-CB=1即梯子底端也滑动了1米,3.(选做题)一架长5米的梯子,斜立在一竖直的墙上,这时梯子底端距墙底3米如果梯子的顶端沿墙下滑1米,梯子的底端在水平方向沿一条直线也将滑动1米吗?用所学知识,论证你的结论,第二组练习:用勾股定理解决简单的实际问题,思考:利用勾股定理解题决实际问题时,基本步骤是什么?Zxxk答案:1.把实际问题转化成数学问题,找出相应的直角三角形.2.在直角三角形中找出直角边,斜边.3.根据已知和所求,利用勾股定理解决问题.,1证明线段相等.已知:如图,AD是ABC的高,AB=10,AD=8,BC=12.求证:ABC是等腰三角形.,答案:证明:AD是ABC的高,ADB=ADC=90.在RtADB中,AB=10,AD=8,BD=6.BC=12,DC=6.在RtADC中,AD=8,AC=10,AB=AC.即ABC是等腰三角形.,分析:利用勾股定理求出线段BD的长,也能求出线段AC的长,最后得出AB=AC,即可.,第三组练习:会用勾股定理解决较综合的问题,2解决折叠的问题.已知如图,将长方形的一边BC沿CE折叠,使得点B落在AD边的点F处,已知AB=8,BC=10,求BE的长.,【思考1】由AB=8,BC=10,你可以知道哪些线段长?请在图中标出来.,答案:AD=10,DC=8.,第三组练习:会用勾股定理解决较综合的问题,2解决折叠的问题.已知如图,将长方形的一边BC沿CE折叠,使得点B落在AD边的点F处,已知AB=8,BC=10,求BE的长.,第三组练习:会用勾股定理解决较综合的问题,【思考2】在RtDFC中,你可以求出DF的长吗?请在图中标出来.,答案:DF=6.,2解决折叠的问题.已知如图,将长方形的一边BC沿CE折叠,使得点B落在AD边的点F处,已知AB=8,BC=10,求BE的长.,第三组练习:会用勾股定理解决较综合的问题,答案:AF=4.,【思考3】由DF的长,你还可以求出哪条线段长?请在图中标出来.,2解决折叠的问题.已知如图,将长方形的一边BC沿CE折叠,使得点B落在AD边的点F处,已知AB=8,BC=10,求BE的长.,第三组练习:会用勾股定理解决较综合的问题,【思考4】设BE=x,你可以用含有x的式子表示出哪些线段长?请在图中标出来.,答案:EF=x,AE=8-x,CF=10.,2解决折叠的问题.已知如图,将长方形的一边BC沿CE折叠,使得点B落在AD边的点F处,已知AB=8,BC=10,求BE的长.Zxxk,第三组练习:会用勾股定理解决较综合的问题,【思考5】你在哪个直角三角形中,应用勾股定理建立方程?你建立的方程是.,答案:直角三角形AEF,A=90,AE=8-x,.,2解决折叠的问题.已知如图,将长方形的一边BC沿CE折叠,使得点B落在AD边的点F处,已知AB=8,BC=10,求BE的长.,第三组练习:会用勾股定理解决较综合的问题,【思考6】图中共有几个直角三角形?每一个直角三角形的作用是什么?折叠的作用是什么?,答案:四个,两个用来折叠,将线段和角等量转化,一个用来知二求一,最后一个建立方程.,2解决折叠的问题.已知如图,将长方形的一边BC沿CE折叠,使得点B落在AD边的点F处,已知AB=8,BC=10,求BE的长.,第三组练习:会用勾股定理解决较综合的问题,【思考7】请把你的解答过程写下来.,答案:设BE=x,折叠,BCEFCE,BC=FC=10.令BE=FE=x,长方形ABCD,AB=DC=8,AD=BC=10,D=90,DF=6,AF=4,A=90,AE=8-x,解得x=5.BE的长为5.,3.做高线,构造直角三角形.已知:如图,在ABC中,B=45,C=60,AB=2.求(1)BC的长;(2)SABC.,分析:由于本题中的ABC不是直角三角形,所以添加BC边上的高这条辅助线,就可以求得BC及SABC.,第三组练习:会用勾股定理解决较综合的问题,3.做高线,构造直角三角形.已知:如图,在ABC中,B=45,C=60,AB=2.求(1)BC的长;(2)SABC.,答案:过点A作ADBC于D,ADB=ADC=90.在ABD中,ADB=90,B=45,AB=2,AD=BD=.在ABD中,ADC=90,C=60,AD=,CD=,BC=,SABC=,第三组练习:会用勾股定理解决较综合的问题,思考:在不是直角三角形中如何求线段长和面积?,解一般三角形的问题常常通过作高转化成直角三角形,利用勾股定理解决问题.,思考:利用勾股定理解决综合题的基本步骤是什么?,1.画图与标图,根据题目要求添加辅助线,构造直角三角形.2.将已知量与未知量集中到同一个直角三角形中.3.利用勾股定理列出方程.4.解方程,求线段长,最后完成解题.,1下列线段不能组成直角三角形的是()Aa=8,b=15,c=17Ba=9,b=12,c=15Ca=,b=,c=Da:b:c=2:3:42.如图,在由单位正方形组成的网格图中标有AB,CD,EF,GH四条线段,其中能构成一个直角三角形三边的是()CD,EF,GHAB,EF,GHAB,CD,GHAB,CD,EF,D,B,第四组练习:勾股定理的逆定理的应用,已知:如图,四边形ABCD,AB=1,BC=2,CD=2,AD=3,且ABBC.求四边形ABCD的面积.,分析:本题解题的关键是恰当的添加辅助线,利用勾股定理的逆定理判定ADC的形状为直角三角形,再利用勾股定理解题.,答案:连接AC,ABBC,ABC=90.在ABC中,ABC=90,AB=1,BC=2,AC=.CD=2,AD=3,ACD是直角三角形;四边形的面积为1+.,第五组练习:勾股定理及其逆定理的综合应用,你在本节课的收获是什么?还有什么困惑?,三.课堂小结,1.一个直角三角形的两边长分别为4、5,那么第三条边长为_.2.已知:如图,等边ABC的边长是6cm.求等边ABC的高;SABC.3.(选做题)如图,AB=AC=20,BC=32,DAC90,求BD的长.,四.布置作业,1.如图,折叠直角三角形纸片的直角,使点C落在AB上的点E处已知BC=12,B=30,则DE的长是().A.6B.4C.3D.22.一个直角三角形的两条边长分别是6cm和8cm,那么这个三角形的周长和面积分别是多少?3如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便估算产量.小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知B=90.,答案:2.(1)周长是24cm,面积是24cm2;(2)周长是cm,面积是cm2.,B,答案:336平方米.,五.课堂反馈,5.已知三角形的三边长为9,12,15,则这个三角形的最大角是度;,6.ABC的三边长为9,40,41,则ABC的面积为;,90,180,17,训练、如图,有一块地,已知,AD=4m,CD=3m,ADC=90,AB=13m,BC=12m。求这块地的面积。,24平方米,例2.三角形ABC中,AB=10,AC=17,BC边上的高线AD=8,求BC,10,17,8,17,10,8,规律,分类思想,1.直角三角形中,已知两边长是直角边、斜边不知道时,应分类讨论。,2.当已知条件中没有给出图形时,应认真读句画图,避免遗漏另一种情况。,例3、已知,如图,在RtABC中,C=90,1=2,CD=1.5,BD=2.5,求AC的长.,提示:作辅助线DEAB,利用平分线的性质和勾股定理。,方程思想,解:,过D点做DEAB,E,1=2,C=90DE=CD=1.5在RtDEB中,根据勾股定理,得BE2=BD2-DE2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年互联网理财行业当前发展趋势与投资机遇洞察报告
- 支部工作条例培训课件
- 支气管哮喘急性发作课件
- 擦玻璃安全知识培训课件
- 2025年河北省医疗三严三基理论考试试题及答案
- 2024年全国消防监督管理安全专业技术及理论知识竞赛试题库(附含答案)
- 法律合同法条解析题库(附答案)
- 撇写法课件教学课件
- 2024年职业技能“汽车装调工”专业知识考试题与答案
- 2025年煤炭生产经营单位(一通三防安全管理人员)模拟考试题(含答案)
- 检验科实验室主任岗位职责
- 2025年重庆市事业单位招聘考试新闻类专业综合能力测试试卷重点难点
- 2025四川甘孜州康定市投资发展集团有限公司招聘人员15人笔试参考题库附带答案详解
- 文化娱乐行业消费者行为研究-2025年市场细分与数字营销
- 2025“才聚齐鲁成就未来”山东发展投资控股集团有限公司权属企业招聘88人笔试历年参考题库附带答案详解
- 基孔肯雅热医疗机构门诊应急处置演练方案(二)
- 国家公务员国家综合消防队伍面试真题及答案
- DBJ41-T323-2025 《建设工程消防验收现场评定技术标准》
- 职业规划与创新创业课件
- 中职教师培训课件
- 棋牌室消防安全管理制度范本
评论
0/150
提交评论