




已阅读5页,还剩33页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第8节圆锥曲线的综合问题,考试要求1.掌握解决直线与椭圆、抛物线的综合问题的思想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思想.,知识梳理,1.求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为ykxb,然后利用条件建立b,k等量关系进行消元,借助于直线系的思想找出定点.(2)从特殊情况入手,先探求定点,再证明与变量无关.,3.求解范围问题的方法求范围问题的关键是建立求解关于某个变量的目标函数,通过求这个函数的值域确定目标的范围,要特别注意变量的取值范围.4.圆锥曲线中常见最值的解题方法(1)几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解.,5.圆锥曲线的弦长,微点提醒,1.直线与椭圆位置关系的有关结论(供选用)(1)过椭圆外一点总有两条直线与椭圆相切;(2)过椭圆上一点有且仅有一条直线与椭圆相切;(3)过椭圆内一点的直线均与椭圆相交.2.直线与抛物线位置关系的有关结论(供选用)(1)过抛物线外一点总有三条直线和抛物线有且只有一个公共点,两条切线和一条与对称轴平行或重合的直线;(2)过抛物线上一点总有两条直线与抛物线有且只有一个公共点,一条切线和一条与对称轴平行或重合的直线;(3)过抛物线内一点只有一条直线与抛物线有且只有一个公共点,一条与对称轴平行或重合的直线.,基础自测,1.判断下列结论正误(在括号内打“”或“”),解析(2)因为直线l与双曲线C的渐近线平行时,也只有一个公共点,是相交,但并不相切.(3)因为直线l与抛物线C的对称轴平行或重合时,也只有一个公共点,是相交,但不相切.答案(1)(2)(3)(4),2.(选修21P71例6改编)过点(0,1)作直线,使它与抛物线y24x仅有一个公共点,这样的直线有()A.1条B.2条C.3条D.4条解析结合图形分析可知,满足题意的直线共有3条;直线x0,过点(0,1)且平行于x轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x0).答案C,3.(选修21P69例4改编)已知倾斜角为60的直线l通过抛物线x24y的焦点,且与抛物线相交于A,B两点,则弦|AB|_.,设A(x1,y1),B(x2,y2),则y1y214,|AB|y1y2p14216.,答案16,4.(2019浙江八校联考)抛物线yax2与直线ykxb(k0)交于A,B两点,且这两点的横坐标分别为x1,x2,直线与x轴交点的横坐标是x3,则()A.x3x1x2B.x1x2x1x3x2x3C.x1x2x30D.x1x2x2x3x3x10,答案B,答案D,第1课时最值、范围、证明问题,考点一最值问题多维探究角度1利用几何性质求最值,解析如图,由椭圆及圆的方程可知两圆圆心分别为椭圆的两个焦点,由椭圆定义知|PA|PB|2a10,连接PA,PB分别与圆相交于两点,此时|PM|PN|最小,最小值为|PA|PB|2R8;连接PA,PB并延长,分别与圆相交于两点,此时|PM|PN|最大,最大值为|PA|PB|2R12,即最小值和最大值分别为8,12.,答案C,角度2利用基本不等式或二次函数求最值【例12】(2019郑州二模)已知动圆E经过点F(1,0),且和直线l:x1相切.(1)求该动圆圆心E的轨迹G的方程;(2)已知点A(3,0),若斜率为1的直线l与线段OA相交(不经过坐标原点O和点A),且与曲线G交于B,C两点,求ABC面积的最大值.,解(1)由题意可知点E到点F的距离等于点E到直线l的距离,动点E的轨迹是以F(1,0)为焦点,直线x1为准线的抛物线,故轨迹G的方程是y24x.,(2)设直线l的方程为yxm,其中30,所以m24.,考点二范围问题【例2】(2018浙江卷)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y24x上存在不同的两点A,B满足PA,PB的中点均在C上.,所以y1y22y0,因此,PM垂直于y轴.,规律方法解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.,又a2b2c2,b1,a2,,依题意,(8km)24(4k21)(4m24)0,化简得m24k21,,y1y2(kx1m)(kx2m)k2x1x2km(x1x2)m2.,(4k25)x1x24km(x1x2)4m20,,即(4k25)(m21)8k2m2m2(4k21)0,,考点三证明问题,(2)解由题意得F(1,0).设P(x3,y3),则(x31,y3)(x11,y1)(x21,y2)(0,0).由(1)及题设得x33(x1x2)1,y3(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设计质量提升管理制度
- 诊所义诊项目管理制度
- 诊所日常器械管理制度
- 试验检修设备管理制度
- 财务管理税务管理制度
- 财政往来资金管理制度
- 货场出库日常管理制度
- 货物进出登记管理制度
- 货运码头现场管理制度
- 2025年中国防窥膜行业市场全景分析及前景机遇研判报告
- 《滑炒技法-尖椒炒肉丝》教学设计
- 岐山县南湾水泥用灰岩矿矿山地质环境保护与土地复垦方案
- 反违章安全教育讲义
- 2023-2024学年江苏省张家港市小学语文五年级期末高分模拟题附参考答案和详细解析
- 医院创建二甲医院工作实施方案
- 城市管理学PPT完整全套教学课件
- 人教版三年级语文下册八个单元作文写作范文
- 陶土板施工技术交底
- 分子生物学知到章节答案智慧树2023年湖南科技大学
- 《园艺产品贮藏与加工》考试题库大全(附答案)
- 义务教育历史课程标准(2022年版)
评论
0/150
提交评论