




已阅读5页,还剩35页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
主要内容:,一等价向量组,二向量组的极大线性无关组,三向量组的秩与矩阵秩的关系,第3.4节向量组的极大线性无关组,一、等价向量组,若同时向量组B也可以由向量组A线性表示,就称向量组A与向量组B等价。,即,等价向量组的基本性质:,(2),则向量组必线性相关。,推论2:两个线性无关的等价的向量组,必包含相同个数的向量。,二、向量组的极大线性无关组,定义2:,注:,(1)只含零向量的向量组没有极大无关组(零向量线性相关)。,简称极大无关组。,那么称部分组为向量组的一个极大线性无关组。,(2)一个线性无关向量组的极大无关组就是其本身。,(3)一个向量组的任一向量都能由它的极大无关组线性表示。,(2)向量组A中每一个向量均可有线性表示。,例如:在向量组中,,注:一个向量组的极大无关组一般不是唯一的。,极大无关组的一个基本性质:,任意一个极大线性无关组都与向量组本身等价。,又,向量组的极大无关组不唯一,而每一个极大无关组都与向量组等价,所以:,向量组的任意两个极大无关组都是等价的。,由等价的线性无关的向量组必包含相同个数的向量,可得,定理:一个向量组的任意两个极大无关组等价,且所含向量的个数相同。,三、向量组的秩与矩阵秩的关系,定义3:向量组的极大无关组所含向量的个数,称为这个向量组的秩,记作,例如:向量组的,秩为2。,1.向量组的秩,(4)等价的向量组必有相同的秩。,关于向量组的秩的结论:,(1)零向量组的秩为0。,注:两个有相同的秩的向量组不一定等价。两个向量组有相同的秩,并且其中一个可以被另一个线性表示,则这两个向量组等价。,2.矩阵的秩,把矩阵的每一行看成一个向量,则矩阵可被认为由这些行向量组成,把矩阵的每一列看成一个向量,则矩阵可被认为由这些列向量组成。,定义4:矩阵的行向量的秩,就称为矩阵的行秩;矩阵的列向量的秩,就称为矩阵的列秩。,例如:矩阵,的行向量组是,因为,由,即,可知,线性相关。,所以矩阵A的行秩为3。,矩阵A的列向量组是,而,所以矩阵A的列秩是3。,问题:矩阵的行秩矩阵的列秩,引理1:矩阵的初等行变换不改变矩阵的行秩。(列)(列),(1)对换矩阵A的两行,A的行向量组所含向量未变,所以向量组的秩不变,所以矩阵A的行秩不变。,(2)用非零常数k乘以A的第i行,即A的行秩不变。,(3)非零常数k乘以第i行后加到第j行上,所以两个向量组等价,所以行向量组的秩不变,所以矩阵的行秩不变。,引理2:矩阵的初等行变换不改变矩阵的列秩。(列)(行),则,下面证明A的列向量组的极大无关组,经过初等行变换变为,是矩阵B的列,因为P为初等矩阵的乘积,所以P可逆。,线性无关。,向量组的极大无关组。,(2)再证B的列向量组中任一向量,可由向量组,线性表示。,是A的列向量组的极大无关组,使得,所以,B的列秩rA的列秩,综上,矩阵的初等变换不改变矩阵的行秩与列秩。,定理:矩阵的行秩矩阵的列秩,证:任何矩阵A都可经过初等变换变为,形式,,而它的行秩为r,列秩也为r。,又,初等变换不改变矩阵的行秩与列秩,,所以,A的行秩rA的列秩,定义5:矩阵的行秩矩阵的列秩,统称为矩阵的秩。,记为r(A),或rankA,或秩A。,推论:矩阵的初等变换不改变矩阵的秩。,结论:行阶梯形矩阵的秩非零行的行数,从而,矩阵A的秩矩阵A的行向量组的秩非零行的行数.,求矩阵秩的方法:把矩阵用初等行变换变成行阶梯形矩阵,则行阶梯形矩阵中非零行的行数就是原来矩阵的秩。,解:看行秩,例2:求上三角矩阵的秩,线性无关,,所以矩阵的秩行向量组的秩3非零行的行数,求向量组的秩、极大无关组的步骤:,r(A)=B的非零行的行数,(3)求出B的列向量组的极大无关组,(4)A中与B的列向量组的极大无关组相对应部分的列向量组即为A的极大无关组。,引理2:矩阵的初等行变换不改变矩阵的列秩。(列)(行),解:,又因为B的1,2,5列是B的列向量组的一个极大无关组,考虑:是否还有其他的极大无关组?,与,解:设,则B的1,2列为极大无关组,且,2.3矩阵秩的性质,(1)等价的矩阵,秩相同。,(3)任何矩阵与可逆矩阵相乘,秩不变。,(4),当AB=0时,有,3.矩阵的秩与行列式的关系,定理:,n阶方阵A,,即A为可逆矩阵(也称为满秩矩阵),A的n个行(列)向量线性无关,A的n个行(列)向量线性相关,主要内容:,一向量空间的概念,二向量空间的基与维数,三向量在基下的坐标,四思考练习题,第3.5节向量空间,一、向量空间的概念,说明:,n维向量的全体,也是一个向量空间。,定义1:设V为n维向量的集合,如果集合V非空,且集合V对于加法及数乘两种运算封闭,那么就称集合V为向量空间,集合V对于加法及数乘两种运算封闭指,例1:3维向量的全体是一个向量空间。,例2:判别下列集合是否为向量空间.,解:,所以,是向量空间。,(2)不是向量空间。,是否为向量空间.,(这个向量空间成为由向量a,b生成的向量空间),一般地,由向量组所生成的向量空间为,例3:设a,b为两个已知的n维向量,判断集合,解:,所以V是一个向量空间。,二、向量空间的基与维数,且满足:,注(1)只含有零向量的向量空间没有基,规定其维数为0。,(2)如果把向量空间看作向量组,可知,V的基就是向量组的极大无关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 吸痰技术试题及答案
- 铆工技术理论试题及答案
- 2025年春季部编版初中数学教学设计八年级下册第2课时 正方形的判定
- 《2025设备租赁合同范本共享》
- 2025面的合同租赁合同范本
- 公司财税知识培训课件
- 搞笑反诈骗课件
- 国际市场营销(第7版·数字教材版)课件 第1-7章 国际市场营销导论-国际大市场营销
- 求职路上如何应对蒙古特色面试题?实战技巧分享
- 《2025年物流公司挂靠合作协议》
- 《电工》国家职业技能鉴定教学计划及大纲
- 零星维修工程(技术标)
- 篮球投篮教学的课件
- 园林绿化施工现场组织协调方案与措施
- 中专生招生管理办法细则
- 2025年度江苏行政执法资格考试模拟卷及答案(题型)
- 续保团队职场管理办法
- 2025至2030直接甲醇燃料电池(DMFC)行业发展趋势分析与未来投资战略咨询研究报告
- 江苏南京师范大学附属中学2024~2025学年高一下册6月期末考试数学试题学生卷
- 医院质控科服务质量职责
- 船舶公司维修管理制度
评论
0/150
提交评论