中考数学一轮复习第三章函数第4节二次函数的图象与性质课件.ppt_第1页
中考数学一轮复习第三章函数第4节二次函数的图象与性质课件.ppt_第2页
中考数学一轮复习第三章函数第4节二次函数的图象与性质课件.ppt_第3页
中考数学一轮复习第三章函数第4节二次函数的图象与性质课件.ppt_第4页
中考数学一轮复习第三章函数第4节二次函数的图象与性质课件.ppt_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章函数第4节二次函数的图象与性质,考点精讲,考点特训营,二次函数的图象与性质,根据二次函数解析式判断函数图象与性质根据二次函数图象判断相关结论二次函数图象与a、b、c的特殊关系二次函数解析式的确定图象的平移(以一般式y=ax2+bx+c为例)与一元二次方程、不等式的关系,未完继续,根据二次函数解析式判断函数图象与性质,根据二次函数解析式判断函数图象与性质,未完继续,返回,根据二次函数解析式判断函数图象与性质,y,根据二次函数图象判断相关结论,=,未完继续,根据二次函数图象判断相关结论,返回,=,=,=,二次函数图象与a、b、c的特殊关系,未完继续,=,=,二次函数图象与a、b、c的特殊关系,未完继续,=,=,返回,二次函数图象与a、b、c的特殊关系,=,=,1.待定系数法求解析式,(1)对于二次函数y=ax2+bx+c,若系数a,b,c中有一个未知,则代入任意一点坐标;若有两个未知,则代入任意两点坐标;若三个都未知,根据下表所给点坐标选择适当的表达式:,(2)联立一次方程组,求得系数;(3)将所得系数代入解析式即可,未完继续,2.根据图象变换求解析式,(1)将已知解析式化为顶点式y=a(x-h)2+k;(2)根据下表求出变化后的a,h,k:,(3)将变化后的a,h,k代入顶点式中即可得到变化后的解析式,返回,向左平移m个单位:y=a(x+m)2+b(x+m)+c向右平移m个单位:y=a(x-m)2+b(x-m)+c向上平移m个单位:y=ax2+bx+c+m向下平移m个单位:y=ax2+bx+c-m,图象的平移(以一般式y=ax2+bx+c为例),口诀:左加右减,上加下减,注:二次函数的平移过程中,沿x轴平移时即左右平移,给所有含x的项左加右减,沿y轴平移时即上下平移,给整体上加下减,返回,方程ax2+bx+c=0的解二次函数y=ax2+bx+c与x轴的交点的横坐标值方程有两个的实数根,则b2-4ac0抛物线与x轴有两个交点方程有两个相等的实数根,则b2-4ac0抛物线与x轴有一个交点方程无实根,则b2-4ac0抛物线与x轴无交点,与一元二次方程的关系,温馨提示数形结合,熟练应用二次函数与一元二次方程的互化关系,将二次函数与坐标轴的交点问题转化为一元二次方程解决,或将一元二次方程问题转化为二次函数问题,利用函数的图象与性质解决,未完继续,1时,y随x的增大而增大()二次函数的最小值是4()二次函数图象的对称轴是x1()已知x5时,y12,则x3时,y12()二次函数图象的顶点坐标是(1,4)(),【解析】a10,抛物线开口向上,不正确;对称轴为x1,当x1时,y随x的增大而增大,正确;由函数解析式y(x1)24可知,二次函数的最小值是4,正确;抛物线的对称轴是x1,正确;两点关于对称轴对称,当x3时,y12正确;已知二次函数解析式y(x1)24,则抛物线的顶点坐标是(1,4),正确,(4)这个二次函数图象是由yx2经过怎样的平移得到的()A.先向右平移1个单位,再向上平移4个单位B.先向右平移1个单位,再向下平移4个单位C.先向左平移1个单位,再向上平移4个单位D.先向左平移1个单位,再向下平移4个单位,【解析】二次函数解析式为y(x1)24,即为yx2先向右平移1个单位,再向下平移4个单位,故B正确,B,练习一次函数yaxc(a0)与二次函数yax2bxc(a0)在同一平面直角坐标系中的图象可能是(),D,【解析】由二次函数和一次函数的解析式可知,当x0时,两函数图象与y轴交于同一点,故A错误

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论