新课标天津市2019年高考数学二轮复习专题能力训练9三角函数的图象与性质理.doc_第1页
新课标天津市2019年高考数学二轮复习专题能力训练9三角函数的图象与性质理.doc_第2页
新课标天津市2019年高考数学二轮复习专题能力训练9三角函数的图象与性质理.doc_第3页
新课标天津市2019年高考数学二轮复习专题能力训练9三角函数的图象与性质理.doc_第4页
新课标天津市2019年高考数学二轮复习专题能力训练9三角函数的图象与性质理.doc_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题能力训练9三角函数的图象与性质一、能力突破训练1.为了得到函数y=sin2x-3的图象,只需把函数y=sin 2x的图象上所有的点()A.向左平行移动3个单位长度B.向右平行移动3个单位长度C.向左平行移动6个单位长度D.向右平行移动6个单位长度2.设R,则“-1212”是“sin 0,0,|0)个单位所得图象对应的函数为偶函数,则n的最小值为.8.函数f(x)=Asin(x+)A0,0,|0,0)的部分图象,其中A,B两点之间的距离为5,则f(-1)等于()A.2B.3C.-3D.-213.设函数f(x)=2sin(x+),xR,其中0,|,若f58=2,f118=0,且f(x)的最小正周期大于2,则()A.=23,=12B.=23,=-1112C.=13,=-1124D.=13,=72414.函数y=11-x的图象与函数y=2sin x(-2x4)的图象所有交点的横坐标之和等于()A.2B.4C.6D.815.如果两个函数的图象平移后能够重合,那么称这两个函数为“互为生成”函数.给出下列四个函数:f(x)=sin x+cos x;f(x)=2(sin x+cos x);f(x)=sin x;f(x)=2sin x+2.其中为“互为生成”函数的是.(填序号)16.如图,在同一个平面内,向量OA,OB,OC的模分别为1,1,2,OA与OC的夹角为,且tan =7,OB与OC的夹角为45.若OC=mOA+nOB(m,nR),则m+n=.17.已知函数f(x)的图象是由函数g(x)=cos x的图象经如下变换得到:先将g(x)图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图象向右平移2个单位长度.(1)求函数f(x)的解析式,并求其图象的对称轴方程;(2)已知关于x的方程f(x)+g(x)=m在0,2)内有两个不同的解,.求实数m的取值范围;证明:cos(-)=2m25-1.专题能力训练9三角函数的图象与性质一、能力突破训练1.D解析 由题意,为得到函数y=sin2x-3=sin2x-6,只需把函数y=sin 2x的图象上所有点向右平行移动6个单位长度,故选D.2.A解析 当-1212时,06,0sin 12.“-1212”是“sin 12”的充分条件.当=-6时,sin =-1212,但不满足-1212.“-1212”不是“sin 12”的必要条件.“-1212”是“sin 12”的充分而不必要条件.故选A.3.B解析 由题意可知,将函数y=2sin 2x的图象向左平移12个单位长度得y=2sin2x+12=2sin2x+6的图象,令2x+6=2+k(kZ),得x=k2+6(kZ).故选B.4.A解析 f(x)=2cos x+4,图象如图所示,要使f(x)在-a,a上为减函数,a最大为4.5.B解析 由题意知T=,则=2.由函数图象关于直线x=3对称,得23+=2+k(kZ),即=-6+k(kZ).|0,所以当k=1时,n有最小值512.8.2sin8x+4解析 由题意得A=2,函数的周期为T=16.T=2,=8,此时f(x)=2sin8x+.由f(2)=2,即sin82+=sin4+=1,则4+=2k+2,kZ,解得=2k+4,kZ.|2sin6=1,与图象不符,故舍去.综上,f(x)=2sin3x+56.故f(-1)=2sin-3+56=2.13.A解析 由题意可知,22,118-58142,所以231.所以排除C,D.当=23时,f58=2sin5823+=2sin512+=2,所以sin512+=1.所以512+=2+2k,即=12+2k(kZ).因为|,所以=12.故选A.14.D解析 函数y1=11-x,y2=2sin x的图象有公共的对称中心(1,0),作出两个函数的图象如图.当1x4时,y10,而函数y2在(1,4)上出现1.5个周期的图象,在1,32和52,72上是减函数;在32,52和72,4上是增函数.所以函数y1在(1,4)上函数值为负数,且与y2的图象有四个交点E,F,G,H.相应地,y1在(-2,1)上函数值为正数,且与y2的图象有四个交点A,B,C,D,且xA+xH=xB+xG=xC+xF=xD+xE=2,故所求的横坐标之和为8.15.解析 首先化简题中的四个解析式可得:f(x)=2sinx+4,f(x)=2sinx+4,f(x)=sin x,f(x)=2sin x+2.可知f(x)=sin x的图象要与其他的函数图象重合,单纯经过平移不能完成,必须经过伸缩变换才能实现,所以f(x)=sin x不能与其他函数成为“互为生成”函数;同理f(x)=2sinx+4的图象与f(x)=2sinx+4的图象也必须经过伸缩变换才能重合,而f(x)=2sin x+2的图象可以向左平移4个单位,再向下平移2个单位即可得到f(x)=2sinx+4的图象,所以为“互为生成”函数.16.3解析 |OA|=|OB|=1,|OC|=2,由tan =7,0,得00,cos 0,tan =sincos,sin =7cos ,又sin2+cos2=1,得sin =7210,cos =210,OCOA=15,OCOB=1,OAOB=cos+4=-35,得方程组m-35n=15,-35m+n=1,解得m=54,n=74,所以m+n=3.17.(1)解 将g(x)=cos x的图象上所有点的纵坐标伸长到原来的2倍(横坐标不变)得到y=2cos x的图象,再将y=2cos x的图象向右平移2个单位长度后得到y=2cosx-2的图象,故f(x)=2sin x.从而函数f(x)=2sin x图象的对称轴方程为x=k+2(kZ).(2)解 f(x)+g(x)=2sin x+cos x=525sinx+15cosx=5sin(x+)其中sin=15,cos=25.依题意,sin(x+)=m5在0,2)内有两个不同的解,当且仅当m51,故m的取值范围是(-5,5).证法一 因为,是方程5sin(x+)=m在0,2)内的两个不同的解,所以sin(+)=m5,sin(+)=m5 .当1m5时,+=22-,即-=-2(+);当-5m1时,+=232-,即-=3-2(+),所以cos(-)=-cos 2(+)=2sin2(+)-1=2m52-1=2m25-1.证法二 因为,是方程5sin(x+)=m在0,2)内的两个不同的解,所以sin(+)=m5,sin(+)=m5 .当1m5时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论