




已阅读5页,还剩25页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
对数的运算,高一数学多媒体课堂,教学目的:(1)理解对数的概念,能够进行对数式与指数式互化;(2)掌握对数的运算性质;(3)掌握好积、商、幂、方根的对数运算法则,能根据公式法则进行数、式、方程的正确运算及变形,进一步培养学生合理的运算能力;教学重点:对数的定义、对数的运算性质;教学难点:对数的概念;,要求学生掌握对数的换底公式,并能解决有关的化简、求值、证明问题。,探索:把左右两列中一定相等的用线连起来,对数的换底公式,证明:设,由对数的定义可以得:,即证得,这个公式叫做换底公式,其他重要公式1:,其他重要公式2:,证明:设,由对数的定义可以得:,即证得,其他重要公式3:,证明:由换底公式,取以b为底的对数得:,还可以变形,得,指数、对数方程,问题:已知2x=3,如何求x的值?,若已知log3x=0.5,如何求x的值?,公式的运用:利用换底公式统一对数底数,即“化异为同”是解决有关对数问题的基本思想方法;,解法:原式=,解法:原式=,例题2:计算,的值,分析:先利用对数运算性质法则和换底公式进行化简,然后再求值;解:原式=,已知,求,的值(用a,b表示),分析:已知对数和幂的底数都是18,所以先将需求值的对数化为与已知对数同底后再求解;解:,,一定要求,利用换底公式“化异为同”是解决有关对数问题的基本思想方法,它在求值或恒等变形中起了重要作用,在解题过程中应注意:(1)针对具体问题,选择好底数;(2)注意换底公式与对数运算法则结合使用;(3)换底公式的正用与逆用;,例三、设,求证:,证:,2比较,的大小。,例四、若log83=p,log35=q,求lg5解:log83=p,又,例六、若,求m解:由题意:,例1、解方程:(1)22x1=8x,解:原方程化为22x1=23x,2x1=3x,x=1,方程的解为x=1,(2)lgxlg(x3)=1,解:原方程化为lgx=lg10+lg(x3),lgx=lg10(x3),x=10(x3),经检验,方程的解为,化同底法,例2、解方程:(1)82x=,解:原方程化为2x+3=,(x+3)lg2=(x29)lg3,(x+3)(xlg33lg3lg2)=0,故方程的解为,指对互表法,(2)log(2x1)(5x2+3x17)=2,解:原方程化为5x2+3x17=(2x1)2,x2+7x18=0,x=9或x=2,当x=9时,2x10与对数定义矛盾,故舍去,经检验,方程的解为x=2,例3、解方程:(1),解:原方程化为,则有t24t+1=0,x=1或x=1,故方程的解为x=1或x=1.,(2)log25x2logx25=1,换元法,解:原方程化为log25x=1,设t=log25x,则有t2t2=0,t=1或t=2,即log25x=1或log25x=2,x=或x=625,例4、解方程:log3(3x1)log3(3x1)=2,解:原方程化为,则t(t1)=2,故方程的解为,重点归纳,a、b0且a、b1,ab,c为常量,af(x)=ag(x),f(x)=g(x),logaf(x)=logag(x),af(x)=bg(x),f(x)lga=g(x)lgb,logf(x)g(x)=c,g(x)=f(x)c,pa2x+qax+r=0,plg2x+qlgx+r=0,pt2+qt+r=0,化同底法,指对互表法,换元法,解对数方程应注意两个方面问题:,(1)验根;,(2)变形时的未知数的范围认可扩大不要缩小.,学生练习:解方程1、lgx+lg(x3)=12、3、4、lg2(x+1)2lg(x+1)=35、,答案:1、x=52、x=3、x=24、x=999或x=5、x=2,1、计算:(1)log5352log5+log57log51.8,解:原式=log5(57)2(log57log53)+log57log5,=1+log572log57+2log53+log57(log5321),=1+2log532log53+1,=2,(2)lg25+lg2lg5+lg2,解:原式=lg2+lg2lg+lg2,=(1lg2)2+lg2(1lg2)+lg2,=12lg2+lg22+lg2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030基因检测服务商业模式创新与数据价值挖掘报告
- 2025-2030基于碳足迹追踪的电池储能系统绿色管理单元认证体系构建
- 2025-2030基于数字孪生的埋弧焊机器人远程运维系统开发与应用
- 2025-2030培育钻石品牌营销策略与消费者认知转变跟踪报告
- 2025-2030土壤修复技术创新与环保产业发展政策红利专题研究报告
- 2025-2030固态激光雷达车规级认证挑战与解决方案报告
- 2025-2030啤酒工业数字化转型智能工厂落地实践案例分析
- 2025-2030啤酒企业财务风险管理与成本控制优化实施方案报告
- 2025-2030咖啡行业消费习惯与区域市场差异分析报告
- 2025-2030后疫情时代药用饲料行业变革趋势与商业模式重构报告
- 2025年果园租赁的合同范本
- 山东省东营市垦利区(五四制)2024-2025学年六年级下学期7月期末考试历史试卷(含答案)
- 2025-2026学年高二上学期第一次月考英语试卷01(全国)
- 清新福建魅力八闽课件
- 4.1 整式(第2课时 多项式)课件-人教版七年级上册数学
- 2025年大唐集团招聘笔试试题及答案
- 《PLC电气控制技术》课件(共九章)
- 2025年全国电力安全生产网络知识竞赛题库及答案
- 2025年通榆县事业单位面向社会公开招聘工作人员及公开招聘基层治理专干(19人)考试参考试题及答案解析
- 《军品价格管理办法》
- 2025年会计师事务所招聘面试模拟题及解析
评论
0/150
提交评论