




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省滕州市第二中学 高三上学期期末考试数学文试题 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。1已知是虚数单位,则等于( ) A BCD2命题:;命题:关于的实系数方程有虚数解,则是的 ( )A充分不必要条件 B必要不充分条件 C充要条件 D既不充分也不必要条件3把函数f(x)的图象向右平移一个单位长度,所得图象恰与函数的反函数图像重合,则f(x)A B C D4已知函数,其中,记函数满足条件:为事件,则事件发生的概率为A B C D5在中,D是BC的中点,AD=3,点P在AD上且满足则A6B C-12 D 6某几何体的三视图如下图所示,则它的表面积是A B C D 7已知,且则的是A B CD8阅读下侧程序框图,输出的结果的值为A BC D9已知双曲线的方程为,它的左、右焦点分别,左右顶点为,过焦点先作其渐近线的垂线,垂足为,再作与轴垂直的直线与曲线交于点,若依次成等差数列,则离心率e=A B C或 D10如图放置的边长为1的正方形沿轴正方向滚动设顶点的轨迹方程是,设在其两个相邻零点间的图象与轴所围区域为S,则直线从所匀速移动扫过区域S的面积D与的函数图象大致为二、填空题:本大题共5小题,每小题5分,共25分。11已知过原点的直线与圆相切,若切点在第二象限,则该直线的方程为 12若命题“”为假命题,则实数a的取值范围是 13设满足约束条件若目标函数的最大值为则的最小值为_14已知定义在上的函数满足,且, ,若是正项等比数列,且,则等于 15函数的定义域为,若存在闭区间,使得函数满足以下两个条件:(1)在m,n上是单调函数;(2)在m,n上的值域为2m,2n,则称区间m,n为的“倍值区间”下列函数中存在“倍值区间”的有 (填上所有正确的序号)=x2(x0); =ex(xR);=;=三、解答题:本大题共6小题,共75分。解答应写出文字说明、证明过程及演算步骤。(注意:在试题卷上作答无效)16(本题满分为12分)在中,角A,B,C所对边分别为a,b,c,且向量,,满足(1)求角C的大小;(2)若成等差数列,且,求边c的长17(本题满分为12分)数列的前n项和记为,点在直线上,nN*(1)求证:数列是等比数列,并求数列的通项公式(2)设,是数列的前n项和,求的值18(本题满分为12分)某公司研制出一种新型药品,为测试该药品的有效性,公司选定个药品样本分成三组,测试结果如下表:分组组组组药品有效药品无效已知在全体样本中随机抽取个,抽到组药品有效的概率是(1)现用分层抽样的方法在全体样本中抽取个测试结果,问应在组抽取样本多少个? (2)已知,求该药品通过测试的概率(说明:若药品有效的概率不小于%,则认为测试通过)19(本题满分为12分)在中,AB=2BF=4,C,E分别是AB,AF的中点(如下左图)将此三角形沿CE对折,使平面AEC平面BCEF(如下右图),已知D是AB的中点(1)求证:CD平面AEF;(2)求证:平面AEF平面ABF;(3)求三棱锥C-AEF的体积,20(本题满分为13分)已知动圆与直线相切且与圆:外切。(1)求圆心的轨迹方程;(2)过定点作直线交轨迹于两点,是点关于坐标原点的对称点,求证:;21(本题满分为14分)已知函数的图像过坐标原点,且在点处的切线的斜率是(1)求实数的值; (2)求在区间上的最大值;(3)对任意给定的正实数,曲线上是否存在两点,使得是以为直角顶点的直角三角形,且此三角形斜边的中点在轴上?请说明理由学年度山东省滕州市第二中学高三第一学期期末考数学(文)试题参考答案一、选择题:15DBD D C 610C C B A D 三、解答题:16(1)由可得2分即,又得 而4分 即C=6分(2)成等差数列 由正弦定理可得2c=a+b 可得 而C=, 由余弦定理可得由式可得c=612分17(1)由题意得n+1=2Sn+1, n =2Sn-1+1(n2)(1分)两式相减,得n+1-n =2n 即n+1=3n,(3分),则,当时是首项为1,公比为3的等比数列(5分)(6分)(2)由(1)得知n=3n-1,bn=log3an+1=n,(8分),(10分)(12分)18解:(1) 应在C组抽取样本个数是 (2)的可能性是若测试通过,则的可能有通过测试的概率为12分19(1)取中点,连结,因为分别是的中点 所以 是的中位线,四边形是平行四边形,所以由左图知,又所以四边形为矩形,则,中,为的中点,所以,所以,由左图知,又面AEC平面BCEF,且AEC平面BCEF=CE, ,即AC为三棱锥的高,20解析:(1)法1:根据题意动圆圆心到定点和到定直线的距离相等,根据抛物线的定义可知,动圆圆心的轨迹C的方程为5分法2:设,则,即得5分(2)依题意,设直线的方程为,则两点的坐标满足方程组:消去并整理,得,设直线AE和BE的斜率分别为,则:21解:(1)当时,则 (1分) 依题意,得 即,解得 (3分)(2)由(1)知,当时令得或 (4分)当变化时的变化情况如下表:0() 0+0 单调递减极小值单调递增极大值单调递减又所以在上的最大值为 (6分)当时,当时, ,所以的最大值为0 ;当时,在上单调递增,所以在上的最大值为(7分)综上所述,当,即时,在上的最大值为2;当,即时,在上的最大值为 (9分) (3)假设曲线上存在两点满足题设要求,则点只能在y轴的两侧不妨设,则,显然因为是以为直角顶点的直角三角形,所以,即 若方程有解,则存
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 能源天然气综合利用项目建议书
- 2022年交通安全活动总结(15篇)
- 焦炉煤气制甲醇项目建议书(模板)
- 建材物流园工程初步设计
- 既有供暖蒸汽管网及设施改造项目建议书(参考范文)
- 法制宣传教育讲座
- 四川省雅安市名山中学2023-2024学年高一上学期12月月考生物 含解析
- 美术教育生职业生涯规划
- 幼儿识字教学设计及实施策略
- 潍坊护理职业学院《仿生智能材料》2023-2024学年第二学期期末试卷
- 2024年度山西省教育系统后备干部题库及答案
- EPC项目设计安全保障措施
- 《金融科技概论》期末考试题库(浓缩300题)
- 船舶检验知识培训课件
- 《干部监督有关知识》课件
- 小学科学冀人版六年级下册全册同步练习含答案
- 营养风险高危护理措施
- 投顾服务方案
- 工程师转正汇报课件
- 语法知识-2022-2023学年八年级语文上学期期中考前复习训练(解析版)
- 水利工程中的水环境保护与生态修复
评论
0/150
提交评论